Digitized by the Internet Archive in 2019 with funding from University of Toronto

SURGICAL ANATO.

JOSEPH MACLISE,

fellow of the royal college of surgeons.

Srond Édition.

LONDON:
JOHN CHURCHILL, NEW BURLINGTON S'IUEE'.
mbccelvi.

LONDON:
s.ivili \& Edwards, pristers, 4, cilavdos street cotemp oarden.

I INSCRIBE THIS WORK

TO THE GENTLEMEN WITH WHOM AS A FELIOW-STUDENT I WAS ASSOCIATED At the LONDON UNTVERSITY COLLEGE:

AND iN AN ESPECIAL MANNER, iN THEIR NAME AS WELL AS MFY OWN, I AVAIL MYSELP OF THE OPPORTUNITY TO RECORD,
ON THIS FAGF,

ALDEIT IN CHARACTERS LESS IMPRESSIVE THAN THOSE WHICII ARE WRITTEN

ON The living tablet of memony,

THE DEBT OF GRATITUDE WHICH WE OWF
TO THE LATE
SAMUEL COOPER, F.R.S., AND RORERT LISTON, F.R.S., TWO AMONG THE MANY distinguished erofessons of that institution,
whose pupls we have bern,

AND FROM WIOB WE INIERIT THAT BETTER FOSSESSION TIAN LIFE ITSELF, AN ASPIRATION FOR THE LIGHT OF SCIENCE.

JOSEPH MACLISE.

NOTICE TO THE SECOND EDITION

Notminnstandixa the favomable regards with which the First Cdition of this Work mppears to huve beell received, I mynalf huse, since it pullicatinn, heronne too scmeible of its ronny hants and defieicreies (whieh mat, throngh kindliness, lave been so lightly coralemad) mot to lano med iny best cendeavaurs to ruvise and correct them, having been afforded an opportunity for doiug so,

In the present Ditition will be seen reproduen (hy those who may choose to compphe theta) as mach of the former ono as has been considenel wortly of antice, and also that fargo additions to the nmmbor of the Figares, and to the matter of the Commontaries on thom, have been made. The original Plates have been all redrawn, nad nearly nll of thent on a larger seale; they numberell thirty-five in the First, Edition; they lanvo bud added to them soventens new. Plates, anul altogether they amonnt at prasent to the number of iffytwo. The ouperaddoll Figures consist, for the most purt, of those illustmative of the several forms of Ancarism as nifiectiog all the principhl arteries; some of them ars additinnal illustrations of the varieties of Hernie; others, of tho mechawisn of parts; others ame demonstratious of suljecots more or less inturesting to surpical scieuco, if not to surgical art; and othors which uro now anatonical riews of regions and members in their normul comilitions nnd relations.

With regard to the Commentaries, it will he observed that those which referred to the Plates contained in the Fist Edition line beon all rewritteu, recouposed, and consilembly amplifiel, in such wise ass to give to the dall details of mere descriptive austomy a physio. logical as well us a surgical bearing; while those which refer to the additional Plates lan ve been eomposed on a like plan and directed to the same purpose. With this prime objeot constantly in view, of renucring this Work eomplete as a Surgical Anatomy, it will appicali
lowever, that oceasionally 1 hnve indulged in such a consintemtion of the facto before me ns way secin to mamy to lane but a very remots teadency towanda leveloping the ropure: ments of a work with that title. For of what kuonent, it may be nakish, can it be to the Opernting Surgeon to konw the signification of the intermaxillsry bone in a case of hare-lip 3 of that of a cervieal tih in a caso of subelavima ancurim? of that of the creunaser tansele in herniotomy \& of that of the prostate in lithotomy ? of that of the mammury gland in excision of that organ? of that of tho thynoid boly in tmelbentomy ? of that of the splecn,
 white his mode of solviug a difficult smbject is abscission ? To thoso who womld mise sulls and oljection I have only to anwer that I have at times left the beaten lise of narch but to eeek recreution uccording to the following procept:-"Scientin ut potentiu hamana in itlem coincidunt, yuis ignoratio cunse destitnit effetum,"-"Dnte natena mature forman, sive differentiam veram, sive unturum ataranten (ista enim vocabuln liabemus, quar nal indicationem rei proximo accedunt) inveuire, opus ot inteutio est humnere scientive"" Desique multum utilis est in quamplurimis sagacitas quedian in conquireulis et indagandis conformitatibus et sinnilitudinibus physicia. Natnra enim non aisi pareullu vincitor: et quod in contemplatione iustar cruse est, id in operatione iastar regule est."-Nomran Organum.

Eed by this guiding light of the counamative method, I bure throughout the prigress of these pages, recordel illeal nod real fiets even for the yeemingly exhnusted enhiect of Anthrofotomy whiel lanve not hitherto been either witten, spoken, or knowa ; nul which, in defcrenee to tho undersianding of my philosophical professionnl realers, I would have lesitatell to enunciate, ilde they not appear to mo as the self-convinciag comiterrails of the axiom that Things whirh crac equal to the smme are equan to one anather.
J. M

TABLE OF CONTENTS.

PREFACE

intmonetory to the study uf anatomy (human and comparative) is the pasis of sctenctfic sumaery.

COMMENTARY ON PLATES I. AND II

THE FORM OF THE THORAX, AND THE RELATIVE POSITION OF THE LUNOR, HEART, and frimary rioonvessels, etc. the mecthanisat of the hespratory appanatus.

COMMENTARY ON PLATES III. AND IV.

the surgical dissection of the thorail and the emisternal regon, degoatlon of the primary aortic branches. fenetrating wounds. paracentesis. tracheotomy larynootory sionificition of the THYRODD IODY.

COMMENTARY ON PLATES V., YI., AND VII.

the surgical dissection of the superficial and dfep cervical and facial REGIONS. DELIOATION OF THE CAROTID AND SUBCLAFIAN ARTEMES. IUGULAR VENESECTION, ARTERIOTOMY, ETC.

COMDENTARY ON PLATES VIII. AND IX

the surgican dissection of the suprbyiclal and defp axhleany and brachial begions. deliontion of the axhllary and mbachial arterids, etc.

COMMENTARY ON PLATES X. AND XI.

the male and female axillaf compared. shonification of the mamary GLAND. EXCLSLOA OF the mambaby gland. the mechanish of the shoulder appabatus. anatomical. effects of eractures, dislocations, Shoulder appat
and temouts.

COMDMENTARY ON PLATES NII. ANI) XIII.

the surohcal dishection of the bexit of the ehbow and the foreara, the whist, ayd the mand. Venesgetion. heciantish of tile hand, and belative qahue of the digits harutationi delioation of the radlal AND ULNAK ARTERIES, ETC.

COMMENTARY ON PLATES XIV., XV., AND XVI.

ANEURISM OR THE MEART, AORTIC ARCH, AND PHLMARY BRANCHES MECRANISM of the cardiac-arterial ind thoracic-venous doumle circolatory appartites.

COMMENTARY ON PLATES NYLU. AND XVLII.

 juoular and heachisl anktrismal varix. tilian causes, form, epfects, simptons, and treathent exhbained according to the circulating forces of tile candac-arterlat. and thoracte.fenots nouble circtlatory apparatus.

COMMENTARY ON PLATES XIX. ANO NX

 SYBGETRY. UNTTY AND DUALITY. SPECIES, MOXSTROSTTY. SIGNIFICATION of the intermaxilanry bone and labium leponindi. mecianism of tiie duplex cranio-factal apraratis. stricture of tife fesomiaides, etc:

COMMENTARY ON PLATES XXI., XXII, XXIII., XXIY, AND XXV
the fonm of the aboomen and the relitive position of tis contanei ORGANS IS EELTH ANB DISEASE PARACENTPSIS TENETRATSG WOUNDS. Dellgation of the aorta and comaion thac artery. hysterotomy. ovamotomy. melhanism of the thoracte-ampominal apmbatus.

COMMENTARY ON PLATES XXYI, XXVII., AND XXVIII.
THE SUROICAL DISSECTION OF TEE SUPERFICIAL AND DEEP STRUCTURES OF TH INGUINO-FEMORAL REGION.

COMMENTARY ON PLATES XXIX., XXX, XXXI., XXXII., AND XXXIII.
inguinal fernta. tts external oblique and ms internal omhoue and direct anatomical varietirs. teer distinctive dlagnosis. the beat of stmicture the taxis, the operation, demonstrations of the ORIOL AND PROGRESS OF INGUINAL HERNIN AND OF THE OPERATION.

COMMENTARY ON PLATE XXXIV.

DEMONSTRATIONS OF THE NATURE OF CONGENITAL AND INFANTLLE INGUTNAL HERNIE AND OF HYDROCELE

COMMENTARY ON PLATES XXXV, XXXVI., XXXVII, AND XXXVIII. hemoral hernta its anatomical varieties. their dianosis. the seat OF sthicture. the taxis the operationi umbilical hernia, etc, demonstrations of tee origin and progress of femoral hernia, and OF THE OPIRATION, ETC,

COMMENTARY ON PLATES XXXIX, XL, AND XLI.

THE FORN OF TEE PELVIS AND THE RELATIVE ANATOMTY OF INS VISCERA AND bloodyessels, itc mectanism of the pelyic apparatus in reference TO ITS CONTAINED ORGANS. DEMONSTRATIONS OF TEE RELATIVE ANATOMY OF THE BASE OF THE MALE BLADDER, THE URETHRA, AND MS OTHER APPENDAGES,

COMMENTARY ON PLATES XLII. AND XLIII.

the suroical dissection of the superficlal and deep structures of the ahale perineuml lithotohy, ETC,

COMMENTARY ON PLATE XLIV.

CONGENITAL AND fathological deforamties of the prepdea And drethra, STRICTURE AND MECHANICAS OBSTRUCTIONS OF THE URETHRA.

COMMENTARY ON PLATE XLV.

the various forms and positions of strictures and other obstructions of the urethra,-false passages, enlargements and deformities of the prostate

COMMENTARY ON PLATE XLVI.

DEEORMITIES OF THE PBOSTATE, - DISTORTIONS AND ORSTRUCTIONS OF THK prostatic orethra, sienification of the prostate.

COMMENTARY ON PLATE XLVII.

defonmities of the Urinary bladder-the operations of soundino for STONE, OF CATHETERISM, AND OF pUNCTURING THE BLADDER. MECHANICAL ampediment and deformmy of tee bladoer and urinary passage as princiral causes of the formation of calculi.

COMMENTARV ON PLATE XLVIII.

the surgical dissection of the hlac and femoral regions delioation of the external ilhe and fenoral arteries,

COMMENTARY ON PLATES XLIX., L., AND LI.

the surgical dissection of the poplitedi, space, the leg, the ankle, and the foot, delfoation of the pophteal, posterior tiblal, peroneal, and anterior tibial arteries. stechanism of the foot, and relative VALUE OF ITS DIOITS COMPARED WITH THE HAND. CONGENITAL AND PATHOLOGICAL DEFORMITIES OF THE FOOT. AMPUTATION, ETC.

COMMENTARY ON PLATE LII.

ANEDRISM OF THE COMMON ILLAC, EXTERNAL ILIAC, COMMON FEMORAL, FEBTORAL, and popltteal arteries, - their rejative anatomy and operitive treathent.

CONCLUDING COMMENTARY.

the form and distribution or tee vascular system as a whole, anomalies, RAMIFICATION, ANASTOMOSIS,-SIGNIFICATION OF TEE LIVER, SPLEEN, AND PORTAL SYSTEM.

PREFACE.

The object of this work is to present to the student of medieine and to the praetitioner rernoved from the schools, a series of dissections demonsrating the anatomy of the prineipal regions of the human body. Which ever of the titles, surgieal or medical, regional, relative, descriptive or topographieal, may the most appropriately apply to a work of this kind, will matter little, provided its more salient or prominent elaracter be manifested in its own form and feature. The work, as I have designed it, will itself show that my main intent has been to base the practical apon the anatomienl, and to mite these wherever their mutual dependenee was apparent. The surfuce of the living body is perused by the surgeon as a map explanatory of the relative position of the organs beneath; and to aid him in this respect, the present dissections have been made. We dissect the dead body in order to firrnish the memory with as clear an aceount of the structures of its living representative, as if this latter, which we are not allowed to amlyse, were perfectly translucent, and directly demonstrative of its eomponent parts. Sueh is the sulueet-purpose of anatomy as applied to surgery and medicine. But considering Anatomy as a science, p or se, the twin of Astronomy, and reaehing towards a like imperial destiny, who that has a eare for its advaneement ean suppress. at sight of this acemmulation of fhets, a luming to mount the pyramid, and with the telescope of imagination to look through Nature from the known to the unknown?

That department of anatomical research to which the name descriptive strictly applies, as confining itself to the dull, unreasoning aceount of the form and relative loention of the several organs comprising the animul body, is nlmost wholly isolated from that spirit of inquiry whiel aetuates and ennobles Physiology; and cannot tberefore be expected to aim at those comprehensive views which anatony, taken in its widest bearings as a science, neeessarily includes. While the anatomist contents himself with merely numbering ohjects, as he exposes them layer after layor by his dissecting instruments, he does not, in truth, nppear to rise nny higher in the region of the intellectual than the level of the humblest meelmnienl art, which only recognises the existing arrangement of things relative to euch otler, and eombinative for the partienlar design of the form of whatever species this may be, whether organie or inorganic-an amimal or a machine. The deseriptive anatomist of the human body aims at no higher walk in seienee than this; and hence his nomenclature lies as it ism n barbarons jargon, barten of all trathful signification, inconsonant with nature, and blindly irrospective of the cognitio certa ex prineipiis certis exorta. Shut up in his weagre suljeet, ns in a cul de sac leading nowhere, and vegetating remote from the high road of intellectual collision, what deeper meaniug can le (even were be IIaller) be expected to see in the few objects of his experienee, than that they are either hysid or xyphoid, styloid, coracoid, coccucoid, or else innominate, when the little puddle of such invention has breen used dry.

Still, however unsuitable this nomenclature of deseriptive buman anatomy proves to be, when used as an instrument for expomidiug the objects of purer science, we must own it need not disturl us, as medieal or surgical practitioners, so far as our wants areeoneerned. By ns the nomenclature, such as it is, is found to answer conveniently enough the special subject; the haud of man may be ealled a bootjack, so long uls we mistake not the one object for the other. But when onee we pass into the fields of comparison in quest ol' the higher generalizations, it is then we find how special names trummel our progress by their rude and shallow menning.
The anatomy of the hmman hody, when contumplated in comparison with that of other speeies of aninals, imposes ons the mind the task ol induetive reasoning. The relationary properties of amimal forms invite to comparison; this to induction; and upon this rests the science. But from limman anatomy, as from a partieular, we cen never hope to infer one general proposition, howerer much we labour in the study of it; not though we weary onrselves in turniug over whole hecatombs of this mortal quarry in our dissecting rooms; for the form of any one species while existing alone, mmelated to its similars, ean neither interpret itself, nor he the exponent of otber forins, thougha lhunter ply the sealpel. While restricted to the study of the isolated human form, the cramped judg. ment mist waste in such norrow eonfine. It is only in the expansive gaze over all allying and allied species that the intellect, having scope for exereise, Iearns by comparis on to overeome nature, to unveil ber real character, and guin a sight of the ranjesty of naked trutb in its entirety. When we lave first experieneed the analogies and differentials of the many, we are then fitted, on returning to the stady of the one, to vies this one of hmman type under manifold points of interest to which the
eye of scienee was not previously awakened. Aud if by comparison of the many speeces we arrive of the true signifiention of the human one, why shall it not fillow that even surgical anutomy uny receive some benefit from the same process of annlogical reasoning? For my own part, if I did not believe that it may, I would as soon undertinke the reparing of a comuon thoronghfare, ;is the reexamination of the parts of the human boly in the same spirit as, und with no other motive than, that of the ordinary dissector.

The surgical nuntomist has fire his oligect the attainment of an exaet knowledge of the relative position of the several organs of the hman body-their proper structures and their fimetions. To this end he is guided by the light of that same comparatine method which (olene gielding the frnit of knowledge on whatever subject it is brought to hear') emables bim in his own inmediate sulject to judge bow the interral parts counhine for the embodiment of the design as a whole in synthesis, and which, in turn, lends to those parts their only real signification in analysis, To the plysieian, to the surgeon, and to him who would comhine both relationary practices of medicine and surgery, comparison scrving alike, as thut lens through which the judgwent lonks for the essential quulities of things, it follows that when one would pursne cither mode of practice exelusive of the other, to do so with honest purpose and large ranue of understanding, he umst be equally well versed in the subject-mutter of both. It appears, in fact, more trittingly faslionatle than seriously rensonnble, to seek to define the line of demareation between the special callimgs of medicine and surgery; for, the purpose being common to both, and the means (compurison) being the sume, also, it will hence ever be as vain an undeavonr to selparate the one froms the other, withont extinguishing the vitality of both, as it would be to sunder the trunk from the head, and give to each a living individuality. The necessary division of labour is the only reason that can lie adranceel in exeuse of specialisms, but it will be readily granted, that that proue. titioner who has first laid within himself the foundation of a geneml knowledge of matters relationary to his partieular sulject, will be best enabled to pursue this aceording to the dietates of seience. The human hody bcing one in whicb structure blends region with region, and unites all regions to form an indissoluble entirety, as well in function as in form, so rises up the majesty of our art-great, uniform, and one an inductive scienee, set, like a Janns, with double aspeet, watchful between causation and effect; the estate and world of sulfering man her general hospitul, and hers the miuistering hand, the eombatant untithesis of Disease, in whatever form that dread magician walks his empire wards.

Anatomy, therefore, while studied comprativels, and answering to the Tiviot asaurov, in respeet to presential form, whetber in bealth or disease, is the substratum or soil in which the tree of curative art must strike common root, however variously its trunk may luanch into speeialisms. With conpurison as the nurse of renson, the parent tree must be cultivated, if we would make its spleeinl branclies bear the renl finit of scionee. Contrast is our pionecr to truth. Of it alme spring our idens of diversity and uniformity. It is a potent instrument-the ouly one in the hands ad the pathologist, as well as in those of the physiologist-the philosminic generaliser of anatomical facts gathered from the extended survey of un animal kingdom. The humun body in a state of health is the standark wherennto we compare that body in a state of disease. We can best reeognise the condition of a dislocated joint wben we bave hecome well aequainted with its contour in the normal state. All almormal conditions are best understood by contrasting them with those which we consider to be of normal character. Every anatomist is a compurer, in a greater or lesser degree, and he is the grentest anntomist who compares the most generally, for the knowledge of one thing can only cxist for us by the knowledge of another thing, and by the comparison of both.
Impressed with this belief, I have been particular in imitating the notmal form of the hmann hody taken as a whole, in order the more cleurly to express in one compravive view the relutive position of its several regions, and of the various orguns contained in ench of these. Illustration by figures is a medim by which this subject of relative anatomy may be presented to the underotanding in more vivid renlity than it cau be by any mode of writteu description. Indeed, the forms, of organie badies especially, cannot be described in words withuat the aid of figures. Even the muthematical strength of Enclid wond avuil nothing if shorn of his diagrans. Form being the language in which Nature delures her presence, Science receives that presence, and adone imitates her by denonstrating ler realities.

PREFACE

An anatomical illustration enters the understanding at once in a direct phasnge, and is almost independent of the aid of langunge written or spoken. A picture of form is a proposition which solves itself. It is ns an axiom encompassed in a fiamework of sumble self-evident tiruth, that the best sulstitute for Nature berself, by which we may teach the knowledge of her, is an exact representation of her form.
Every surgical anatomist will (if he exanine hinself) perceive that previonsly to undertaking the performance of an operation on the living hody, he stands reassured and self-relinat in that degree in which he is capable of conjuring up before his mental vision a distinet picture of his subject. The mind being as a chart on which the senses chronicle our idens, and memory being the persistence of those ideas, we are all but as reproducing draughtsmen of those ideas by whatever iustrument we trace them in presential reality of form, whether by the scalpel of a Hunter, an Astley Cooper, or a Liston, or hy the scalpel pen and pencil of a Charles Bell, a Cauper, or a Scarpa, a Carus, or a Cuvier.

If there be any novelty now-a-days possilile to he recognised on the out-trodden track of human relative anatomy, it can only be in truthful demonstrations well plamed in aid of the requirements of surgical and medical practice. Under this view alone may the anatomist of the human body hope to add anything uew to what we already know of that sulpect. Except the buman anatomist turns now to the practical ends of his study, and marshals his little kuowledge to bear upon those ends, one may proclaim antbropotomy to bave worn itself out. Dissection can here do no more than to repeat a Meckel or a Cruveilhier; and tbat which these anatonists lave done in demonstration of the parts of the human hody, or tbat which a Cowper or a Semmering did before them, Miiller would seem to have accomplisbed for its plysiological interpretation; Burdacb bas philosophized upon it, and Magendie has experimented to the full upon this theme, in so far ns it would permit. All have pushed the subject to its furthest limits iu one point of view. The narrow circle is now foot-worn. All the sum of facts are long since gathered, sown, and known. We have been seekers after those facts from the days of Aristotle. And what is there now remaining to be done, if it be not to arrange the facts iu band, with a view to their proper interpretation? Are we to put off the day of attempting this interpretation for three tbousand years more, in order to allow these dissectors time for knife.grinding, for hair-splitting, for saywing, chopping, and bammering this pauper corpus montuum till tbe studious air of our cloisters rings like a shambles? How long are they to lead us on tbis dull road, weed- gathering, tracking out hloodvessels, tricking out nerves, and slicing the hrain into still more delicate atoms tban they have done hitberto, in order to coin more names, and swell the dictionary? Is this the work that waits its culminating point? No! as well may they count leaves in forests, pebliles on the sea shore. The work must now be retrospective, if we would render true knowledge progressive. It is not a list of new and disjointed facts that Science at present thirsts for, but she is impressed with the conviction that her wants can alone he supplied by the creation of a new and trutbful theors-a generalization which the facts alreudy known are sufficient to supply, if they were well ordered, according to their natural relationship aud mutual dependence. "Le temps viendra peut-étre," says Fontenclle, "que l'on joindra en un corps régulier ces membres épars; et, s'ils sont tels qu'on le souhaite, ils s'assembleront en quelque sorte d'eux-mêmes. Plusieurs vérités séparées, dès qu'elles sont en assez grand nombre, offrent si vivement i l'esprit leurs rapports et leur mutuelle dépendance, qu'il semhle qu'après les avoir detachées par une espèce de violence les unes des autres, elles cherchent naturellement ì se reunir." (Preface sur l'utilité des Sciences, \&c.)
The comparison of facts already known sbould henceforward he as the scalpel whicb we are to take in hand. We have now hut to return by the same road on which we set ont, and re-examine the things and phenomena which, as novices, we have passed by too hightly. The travelled experience may now sit dowu and contemplate; for this endless search after new anatomical facts has already so exhausted the sinking soul of Science, that she heaves the gorge at thoughts of it. It must be now by the broad clarion sounds of laws and systems, not hy the narrow piping notes of isolated particulars and dislocated phenomena, that we can ever hope to wake to attention again ber slumhering ear. In what direction, well may it be asked, are we now to searcb for a new branch of nerve or artery, in unknown muscle, or process of bone? For what number of such facts are we still to rein-in impatience, and acknowledge our need of these, for the purpose of summing together the whole encircling and satisfying account of a law-of that law of unity in variety, the sum and substance of Nature's living volume, tbe true and final answer to our quid est?-whether we question the difference hetween two vertchre, two hearts, or two brains, of any one species, or of all? The womh of anatomical science teems with the true interpretation of this law, but the birth (even thongh while of no greater bulk than a
pamphlet, it would outweigh in worth all the dissectors' guide-books fossilized in the lilirary strata of past time) is delayed, owing to the parent mind baring hecome altogether "practical." Thougb Aristotle and Linnaus, Buffon, Cuvier, Geoffroy St. Hilaire, Leihnitz, Göthe, Hunter, and all such scions of the royal dynasty of mind, have lived and prescrihed officially, yet the present state of knowledge proclaims tbat the unborn form of this transcendent law awaits some future Newton to help it into life. Tbis is the subject for scalpels of the mind! The iron scalpel has already made acquaintance witb not only the grenter parts, but even with the infonitesimals of the buman body, and Reason, confined to tbis narrow range of the suhject, perceives herself to he imprisoned, aud quenches her guiding ligbt in despair. Originality has here outlived itsclf; discovery is here a finitless enterprise; nor even though we pursue it in the microcosm on the field of tbe nicroscope, can we draw forth demonstratious of other objects than such as are, for nught I can see iu them, as bittle in respect to "practical" importance as they are in regard to physical diuxusions.

The sukject of our study, whichever it happens to be, will appear exbnusted of all interest and the promise of valuable novelty, owing to two reasons:-it may be, like descriptive human anatomy, so poor, so cold, and so sterile in its own nature, that it will he impossihle for even the genius of Promethean fire to warm it; or else, as with existing physiology, the very instrument-tbe nouenclature of descriptive anatony, through which we survey the tbeme, will hilight the fair prospect of trutb, distort induction, and sbackle tbe arms of ratiocination. With the descriptive anatomist drawing analogies hetween things as unrelated to eacb other as are the contents of a swineherd's wallet to the twelve signs of leaven's zodiac! (for of what less vulgar origin come to us the names Pons, Fornix, Islaud; Tænia, Nates, Testes, Cornu, Hippocamp, Thalamus, Calamus, Vernes, Arbor Vitie, Respiratory Iract, Ganglia of Increase, and all such pbrases of mmeaning sound?) and with the plysiologist adopting those names, and making no more question as to their import tban as if be believed (wbich be cannot) that tbey bore the imemimatur of the Jupiter of Truth himself, what hope can Reason cherish of penetrating the cloud which envelopes the cerehro-spinal ens, and giving that casket of the mental jewels its proper signification? Custom alone sanctions our use of such namesthis jogging custom, which shows the mau hat as the offspring of the cbild-hut while

> "Custom calls us to it! That custoin wills; sloold custom nlwass do it, The dust on antique time will lie unswept, And mountninous seror be too highly heaped For truth to overpeer."

But what, it may le asked hy some, is the commexion hetween these remarks and the subject-matter which concerns surgery? The surgeon Hunter bas printed the answer on the walls of his museum in types of flesb and bone-a votive tahlet of greater note, and an offering more acceptable to Ziur than Ammon's sword. Go there, you "practical men" -all you who ride with ever-trencbant operating steel, and you who run afoot in gahardines of Phormacy, so loose and long, and jet can't stop a Liccup-go there, and read the hottled marvels, and learn how mind, the demigod, heing as the sun "kissing earrion," can make that earrion teen!; proclaiming of itself the true resurgam to deathless genius, whose mission it was, rather hy patient thought to unravel this Gordian knot of life, than cut or physic it. Seeking, perhaps, like others, the profit-driving 'Change, a Hunter found, instead, the sacred Temple of Science, and entering that temple by mistake was so overruled by the solemnity of the place, and by tbe glory of the Tutelary Goddess within the inmost slrine, that he forgot his tluift. In bin sbe saw a heartstruck votary; and as in confidence she opened out to bim the folded volumes of ber celestial robe, fretted with starry names, upon her breast she sbowed a vacant orhit where he might set his name as leading Hesperus! and this he did! yea! even whde the warlock Jealousy arose, and, like a vampyre between him and his view, outspread its gloomy wing; made all that firmament its dark escutcheon; quartered the serpent rampant there; and trailed around that firmament, like to a bordering horizon, its hissing motto:-

Erblickst du auch Zngleich die Marterlirone."

Of the illustrations of this work 1 may state, in guarantee of their anatomical accuracy, that they have been made by myself, from my own dissections, first planned at the London University College, and afterwards realized at the Ecole Pratique and School of Anatomy, adjoining the Hlopital La Pitié, Paris, a few years since. Those representing pathological conditions of parts, I have made frous natural specimens, recent and preserved, which I had the opportunity of examining at the
llospitals and Museums in llospitals and Museuns in Paris, London, and elsewhere.

Fiol 1

THE FORM OF TIE THORAX, AND THE RELATIVE POSIHION OF THE LUNGS, HEART, AND PRIMARY BLOODVESSELS, \&ic. TILE MECHANISM OF TIIE RESPIRATORY AIPAPATUS.

Is the human body, during life, there does not exist any such space as canity, properly so called. Every space is finlly oecupied by its contents; and all hollow organs when not distended by passing matter are in a state of collapse. The thorax is completely filled hy its proper piscem, which, in mass, take a perfect cast or model of its interior. The thoracie viscern lie so closely compnoted that they in a great measure influence the form and dimensions of each other, as well in their active as in their passive state. That space which the lungs do not occupy is filled by the heart, great bloorvessels, cesuphagus, nerves, \&e. The position of the heart, N_{1} Fig. l_{1}, is central ; that of the lungs. $\mathrm{3r} \mathrm{~s}$, is lateral. The thorus causes no vacuum in its interior hy its motions of either inspiration or expiration; neither do the lungs nor the heart by dilatation or contraction. When either of these organs requires larger space, on account of its growth, or its functional expansion, it immerliately iuhalits such space at the expense of neighbouring parts. When the hourt dilates, it encroaches on pulmonary space; and when the lang expands, general space diminishes in the same ratio.

The mechanism of respiration and circulation is cosmicul as well as animal in principle; and consists in a constant oscillatory uisus to produce a vacuum, which, however, is never established. The animal or vital force of the thorax and heart opposes the cosmical foree, and raimly strives to make exception to the irrevocable law, that "nature abhors a racuum." This opposition between both forces constitutes the respiratory act, and thos the thoracic apparatus (like as pendulum vilnating according to the action and comnteraction of the force ceutrifugal and the foree centripetal) iuspires and expires in vibrative alternation, precisely indicative of the measure ol its own action and atmospheric reaetion. The inspiration of thoracic spuce is as it were the expiration of geueral space, and the reciprocal action of both eonstitures respiratory motion. The auntonay of the thorus, while studied in elucidation of this prineiple, is replete with practical interest.

The thorax is that region of the body which the ribs, B 111 JK , hound between the neck and abdomen. It contains the hemrt and lungs, and it is traversed by the main bloodvessels, the air-tube, the cesophagus, \&c. The thoras, thongh giving passage to these parts, forms a compartment closed at all points, and apon its peculiar construction in this respect depends much of its elliciency as a premmatical apparatus. Its shape is that of a symnetrical trunculed cone, the apex of whieh is at the ront of the neck, B B, the base being below, and forming at the same time the ruof of the abilomen, oo. The walls of the thorax are formed partly of bone and muscle. The osseous parts consist superiorly of seven complete gindles, (formed respectively of a dorsal vertebra, a pair of opposite ribs, and a sternal piece, arranged in slanting super-position; inferiorly they are formed of five girdles, which, not joining the stermm either as bone or cartilage, leave the osseons thorax incomplete across the epigastrium, O 8 Q 0 ; hut here the deficiency is supplied hy such a disposition of the soft parts, as to render the respiratory chamber perfect as an inclosure. All the intereostal spaces, $\boldsymbol{\text { H }}$, are elosed hy muscles (intercostal), each of which is attached to the adjacent borders of a lateral pair of ribs. The intereostal wascles, whose action is prineipally sulservient to respiration, consist severally of two layers of fibres internal and extenal, which ${ }_{1}$ enclosed separately by laminae of rather dense fibrous membrane, decussate each other, and are described as so disposed, in order to facilitate the approsimation of the ribs at a less expense of muscular power than could with equal eonvenicnce be attained by any other
arraugement. The motion in respect to each other between any two ribs is, however, but very liunited at all tines; but their eollective motion is considerable, and of such is kind as to alter the area of the thoracic chamber, in alnost all directions, from its stationary median plane. The intercostal muscles, though nearly equal in number to the ribs themselres, act nevertheless as one muscle in regard to time and the effect produced upon the capacity of the thorax. A seprarate intercostal muscle possesses no more isolated action than does a part of any other muscle of the boily. The simultaneous contraction of the intercostals promotes the elevation and expansion of the thoras, while their relixation is followed by its depression and partial collipse. Together they form that kund of serics in bilateral symuetry, the individual aembers of which are so enliuked the one to the other, that one cannot aet distinctly without cxciting the whole number, not only on its own but on the opposite side. The first pair of opposite rils, B B_{1}, heing more fixed than any other pair in the series, and each pair in the order of descent becoming longer aud more and more moveable, it follows that, under the influence of the intercostal rouseles, not only must all the ribs tend to the position of the first pair, but that the lower and longer pairs affect the capacity of the thoras to a greater extent than the others. The spinal column being stationary, and having all the ribs artirculated with it and acting on it, while the stemum, $A A_{1}$ is moveable with such of the ribs as are attached to it, so it must appear that the range of motion performed hy each rib, and by the tborux as is whole, is greatest anteriorly and least posteriorly. Like the rils and intercostal museles thenselves, the arteries, veins, and nerves, which eourse in relution to them, have a serial and symmetrical armagement, thus indieating as well as serving the uniformity of function in which the thoracic apparatus performs.
The thorax is of mach greater vertical cestent behind than in front. The sternum, $\triangle A_{1}$ measures the depth of the thorax anteriorls; the dorsul spiue, posteriorly. The five istermal inferior rils, a π, owing to their becoming gradually shorter from ahove downwards, cause this difference betwecu the two vertical measmements. The summit of the thonax is bounded lyy the structures at the root of the neek: where the trachea, cesophagus, arteries, veins, and nerves, have their cutranee and exit; the luse is formed by the dirphragm, 00^{*}, sloping backwards and downwards from the sternum, A_{1} before, to the top of the lumbar spine behind, nrehing transversely from the borders of the false ribs, AK, of one side to those of the other, and presenting along the middle line three principal openings; one of which is in the right half of its cordijorm tendon, for the passage of the inferior tena cana, which vessel is thereby secured against constritition when the muscle is in action; and ther, sitnated more posteriorly in its musculder part, through which the asophagus passes, and which many therefore be believed to serve the oflhe of closing that fube; and another, situated between the tendinous pillerts of the musele, permanently patent for the passage of the aorta, thoracic duct, and several imporlant nerves. The diupliragm forms at the same tine a movenble convex floor for the thomax, and a concave roof for the abdonen; fiom which circumstumce it will be infured how the action of this muscle monst affect the capacities of both these compartments at one and the sume time. The transverse and antero-posterior diameters of the thorax increase gradually from its sumnit to its hase. Its transverse is greater than its antero-posterior diameters at all levels.

The external form of the thorax, Plate $1 \mathbf{I}$., is somewhat olseared by the

Figure I.
A. Δ^{*}. The steranam ; a. the xiphoill cartiluyce - BB. Sterinut ends of the firat ribe C. Sterzal ead of the right clavicle - D. Aceranion promese - E E Left sabochaian aitery. - e. Iuternal Mannmary artery, mud wein. - F. Suluchaian vius, - G. Auserior artery. - e. Melleernans musde. - I. Cartiluge of the sixth rilh. - I. Sisranth ril, - J. Eighth ribl. -
 Righte and left hing. - M* M*. Soction of midlle lotio of right lung. - N. Purieardium -
 of dinphraggm. - Po. Alstominal morta. - Q. Cardine end of stounch. - P. Inferion vena eares, cut. - R^{0}. Trunk of hepatic reius - S . Right nud left kidneys - T. Fourth limbar vortulum.

Figures II. \& 111.
Plans showsiug the retative position of the thons, lined by the plemen, and of the

soft parts which enter it. his regard to the ahsolnte dimensions of its upper part, we are particulaty liable to crr in consequence of its heing here surrounded hy the osseous and musenlar struetnres which compose the shoulder neparatins. The width of the thomax, I 1 , hetween the slooulders, is equal in transverse diameter to only ahout the immer thirds of the chavicles, K K , and first sternal piece, \mathbf{L}, inclusive; its middle and lower circumferenees, $\mathrm{N} v$, ?re more readlily definable benenth the surfaee, whila its walls at the sub-axillary regions are comparatively superficial. Anterincly, the upher and Iateral two-thirds of the thorax are covered by the greater and lesser pectoral museles, $\mathrm{S} T$, of cither side, nrising from the stermm and andjaeent parts of the ribs, and heing direeted outwards to their insertions, the great peetoral into the neek of the humerus, and the lesser pectoral into the coraenid process of the seapula. At the cellular interval, 8 , helow the claviele and hetween the great peetoml, s , and deltoid muscle, r, the two peetoral part from eontacti with the walls of the thorax. Laterally, hetween the axillary borders of the pectoral and latissimns dorsi muscles, the thoracic walls are closely invested by the serrati magni museles ahove, and the extermal oblique muscles of the ahdomen helow, both muscles interdigitating by their - costal attachments at a line marking, from ahove downwards, the middle of this region. Posteriorly, the dorsal muscles, in layers, form a mass in close contact with the ribs on either side of the spine, from the prominent spinous proecss of the seventh cervical vertehra to that of the last dorsnl, which two points mark the extent of the thorax at this aspect; while on either side, the scapule, covered by their proper muscles, shield the thoracie walls. The scopule, and the muscles more immediately connected with them, obey, however, the motions of the upper limhs so frecly, that by folding the latter in front of the hody, the scapulae may he withdrawn to a considerahle distance from the spine, and the thorax here rendered more superficinl for whatever purpose required. The ahove-mentioned observatious, however requisite it becomes to remember then in examining the well-conditioned adult hody, will he found of less moment in regard to emaciated subjects, in whom the osseons thomax reveals its shape almost completely, the rils being sulbcutaneous in nearly all situntions.
The thorax is divided vertically through the medinn line into two lnteral chambers, 0 o, Plate II., which respectively contain the right and left limg, is M, Plate I. The sternum in front, and the dorsal spine behind, coincide with the median line. The hodies of the verteliree project furwards, while the ribs arching hackwards and outwards from them, form the lateral deep thoracic grooves, in which the thiek back parts of the langs are received. Each pulmonary chamber is lined by a serous membrane, L L, Plate I., F B, Plate II. (the pleurn), which forms a slut sac. The two pleura, a b, Figure 3, Plate I., are alsolntely distinct sacs. Their outer anterior and posterior sides line the thoracie walls; their hases cover the diaphragm; their summits propect into the neek somewhat ahove the level of the first ribs, coming into contact with the suhelayian arteries, e, Figure 1, Plate I., inside the sealeni muscles; and by their inner sides they form the mediastinum, f, Figure 3, Plate I., E E, Plate II., that vertical memhranons partition which extends from the root of the neck to the diaphragm, and from the sternum to the dorsal spine. All the thoracic organs, not excepting the lungs themselves, are situnted hetween the mediastinal sides of the two pleural sacs, as shown in Figures 2 and 3, Plate I. The heart and lungs, hy separating the mediastinal layers to a distance correspondiug with the respective dimensions of those organs, hecome invested by the membranes, and thus each pleural sac remains still perfectly closed at all points. That portion of the pleura which forms an inmediate covering for the lang, is therefore as truly mediastinal as that which covers the beart, the difference between the two parts heing due solely to the eircumstanee that the pulmonary membrane is carried to a grenter distance from the median line than the cardiae mernbrane.

A jnst idea of the forms of hoth pleure, and the manner in which they invest the thoracic organs and line the thorax, may he gained hy a reference to the history of development, Figures 2, 3, Plate I.:- Pwo simple sacs at first appear side by side at the thoracic median line, f, and the adjacent sides being flattened ngainst cach other form the mediastinum. Between the sides in contnct are next deposited the cardiac, $d d$, and the pulmonary germs, $b b$, and these in process of growth hulge those sides apart from each other, and from the median line, to an extent, the heart equal to its own hulk, $d d$, hut the lungs to such a degree that the mediastimal, now hecome the pulmonary pleura, $b 6$, Figure 3 , is bome into general apposition with those sides, a a, of the sacs (plenras costales), which line the thoracie walls. In this way the pleural sacs ave deprived of induded space, and during life in the healthy condition, the parts,
merely moistened by a serous exudation, exist in a state of absolute collapse, which is equal to ahsolute vacumm. This state is neecssary to the perfection of respiratory motion. The full expansion of the Iungs implies the complete eollapse of the sacs, $a b$, Figure 3 ; and the interior of those memhranes heing thus represented hy sides in contact, it therefore follows that all the thoracie space is actually mediastinal
or interpleural.

The thoracie organs, when examined from hefore, hackwards, hetween the two pleuræ, appear in the following order:- Belind the sternum, A A, Figure I, Plate I., the triangulares-sterni musele and the remains of the thymus gland, with some eellolnr menhrane, separate the pleural saes ata small interval, named anterior mediastinum, the upper end of which communieates with the neck; the lower end with the sheath of the rectus aldominis musele, owing to a deficiency in the diaphragm behind the xiphoid eartilage. Next, the heart and primnry hloodvessels, ABC G, Plate II., separate thern at a space, e E, known as middle (cardiac) mediastinum, through which, on either side of the heart, the phrente and hranehes of the vagus nerves descend. Behind this space the pleure meeting become again separnted so as to invest the pulmonary vessels and lungs, forming what I may call the pulmonary mediastinum, b c,bc, Figure 3, Plate I., which in fact equals two-thirds of the area of the thorax. Behind the roots of the lungs the sacs meet and again separate in front of the dorsal vertebre, so as to form the posterior mediastinum, which is traversed hy the trachea, cesophagus, deseending aorta, thoracic duct, and lymplatic vessels, vena azygos, vagns and sympathetic nerves; and from this situation the intereostal vessels and nerres pass outwards, coursing between eaeli pair of rihs, and externally to the parietal part of the pleurnl sae, i, Figure 1, Plate I. From this disposition of the pleural sacs it will he seen, that all the contents of the thorax, though invested hy those membranes, are excluded from their proper interior; and the same remark strictly applies to all other scrous membranes, the amelnoid within the cranium, the peritoneum within the abdomen, the tunica vaginalis within the scrotum, the serous liming of the perieardium, and the synovial membranes lining the joints. In this may he observed an illustration of the general rule, that Nature repeats her first design, for having so perfected the original she needs but to add the slightest shades of modification in order to adapt it to various requirements.

The two lungs, mar, Fignre 1, Plate I., are of unequal size. The left is less than the right hy so much space as the heart, N , oecupies of the left pulmonary compartment, more than of the right. The right lung is usually divided into three lohes; the left into two. The hase of the heart, $A B$, Plate II., and the roots of the great bloodvessels enveloped hy the pericardium, DD, are seated hehind the sternum, ar m, hut separated a little from this hone by the thin anterior edges of the lungs. Behind and on the left side of the lower third of the sternum, the left lung genemily reveals the pericardium, n, Figure 1, Plate I, to some extent; the pleura is also here deficient. The right auricle, H, Plate II., is placed behind the third intercostal space, close to the right side of the sternum, while the apex of the left ventriele protrnding beyond the right, reaches to near the fifth intereostal space, $\mathrm{N} \nabla$, of the left side, midway between the mamilla and the margin of the false rils. Between the situation of the right auricle and that to which the apex of the heart points, the whole extent of the right ventricle is presented to the surface, the edges of the lungs intervening. The heart, especially in the ereet posture of the hody, sinks to a level somewhat helow the sternal cartilages of the seventl ribs; and at this situation (serobieulus cordis, a, Figure 1, Plate I.) the motion of the right ventricle will be found to agitate the surface in the living person, in whom disease or original malformation does not exist. At this place the tendinous eentre of the diaphragm yields somewhat with the weight of the heart towards the abdomen. The ascending part of the aortic areh, c, Plate 11., is placed behind the middle third of the sternum, lying so close to this home, that the vessel becomes flattened against it on injecting the heart from the ahdominal aorta. The heart, A, Plate II., resting upon the diaphragm, Pr, in the relative position now marked out, is hound to the tendinous middle of this muscle hy the fibrous perieardium, DD; and though it rises and sinks aecording to the motions of the muscle in respiration, it is prerented from swaying much to either side, whatever be the position of the hody, thus offering no impediment to pulmonary expansion. Regarding the form of the thorax in relation to the ahdomen, Plate I., Figure 1, and at the same time the amount of space ocecupied hy the heart, s, in both puluonary cbambers, we gain a true estimate of the varying thickness of pulmonary tissue through all diameters of the thorax. Of these diameters the greatest are the antero-posterior and transyerse on the right side; the least heing where the lungs are thinnest in front of

$\sqrt{17}+=$

$1 \quad 1 / 4$
+
$=$
\pm
π

1*:

the heart, over the hypmechondrin, $\Delta x \mathrm{x}$, and low duwn in the dursul region, hetween the rilhs and diaphramn, oo. The hrart tends sternad and to the left side; the lungs tend dorsad, and to either side. In these situations, the sounds (normal and abnormal) of the henrt and lungs may be heard with a grenter degree of clearness than elsewhere.
The thorax, composed partly of bone, of cartilage, and of muscular tissue, is thereloy calculated for fixity, elasticity, and molulity; three conditions necessary for the perfection of respiratory motion. The osseous ribs render it resisfant; and leeing separated at regular intervals from each other, inclined at varying angles with the spinal column, articulated by their posterior ends with that part, and having their anterior ends joined by cartilage to the moveable sternum, they allow of the degree of mobility required. The eostal cartilages render the thom clastic, and by this property of elasticity the whole machine, when under the influence of musculur force, tends to resume its original quiescent state. The intercostal muscles regulate the motions of the ribs, and with the other respiratory muscles are the uctive opponents of the passive elastie foree of the cartilages. To prove the existeuce of design in the arrangement of these elemental paits would be a task of supererogation; but to appreciate it fully is a duty, and to this end we have only in fancy to trunspose these elements from their natural relative position, or to suppose the thotacic walls composed wholly of bowe, of cartilage, or of minscle, and then contrast fitnoss with uafitness.
The thorax varies in form and capacity aceorling to the respiratory motions, and chiefly so at its base. Its summit is scurcely at all affecterd in orlinary, and but little even in forced respiration. The upper ribs are not only less moveable, but muck slorter than the lower ribs. All the ribs slaut downwards and forwards, lescrbing angles of varying degrees in nespees to the spinal column. The lower rils are unch more oblique than the apper ones. Upon this difference ns to length, mobility, and olliquity, between the ribs above and helow, it can he demonstrated geometricully, that while all of them are being elerated and depressed during alternatiug inspiration nad expirntion, the greater range of motion is perfomed by the lower ribs, and the capacity of the thorax is chiefly altered hy and opposite to these. In forced inspiration and expiration, the capacity of the thorax is by turns increased and lessened in all dimeters, lut more particularly so in the vertical. In ordinary inspiration, its eapreity is nlmost solely altered in the vertion diameter; and this is effected by the tensive action of the diaphragm, which causes the ahdominal viscera to reeede in the same degree as the lungs dilate.
The thorax, per se, is not the originator of respintory motion. Nany circnmstances comhine for the efficient performanee of this function; and the part which the thorax, or any other structure, contributes, would be roid, maless all of them coneurred in the act. The thorax is shaped in reference to the abdomen, and the latter becomes as much a principal in respiratory motion as the furmer. The organs contained in both compartuents, and the uanner in which those organs are contained, are as necessary to the net as the system of muscles which surround the parts, or the free aceess of air to the lungs.

The respiratory system of muscles is divided hy anatomists into two classes-those of inspiration, and those of expiration. Uuder the former head are arranged, the sterno-mastoid, scaleui, sterno-hyoid and thyroid, the subchvian, pectoralis major and minor, serratus magnus and serratus postieus superior, the diaphragm and the intercostal muscles. As expiratory museles are mmed, those of the nbdomen, the latissimus dorsi, the tiangulares sterni, the serratus posticus inferior, the quadratus lumhorum, and other muscles of the back, the diapbragm, and the levator ani. Aecording as the parts from which many of these museles arise, or into which they are inserted, beeome fixed points, these muscles act either as expiratory or inspiratory; and hence the difficulty of forming a conrect distinction among them according to their special functions. Considering them, however, according to the classification given, it becomes crident that the inspiratory muscles me much more remarkable for number; size, and power, than the expiratory; and, indeed, if it were said that the latter exist more in imagination than in reality, a good proot of the correctuess of that opinion mry be laad in the fact, that the relaxation of the muscles of respiration in general, by allowing the matural reeoil of the thoracic walls and of the lungs theinselyes to occur unimpeded, is all-
sufficient for expiration as ortinarily perfermed. The ilinyluragm, intercostul and abdoninal muscles are the sole agents in ordinary respiration; the action of these muscles is reciprocal-compensative; and the thomas and abdomon themselvys are correlative, and so mutually ohedient in all their parts for the , hue pertennamee of the process, that when we would deseribe the respimitory apparatus, it is necessary to consider the two chambers as halves of the one whole machine. The diaphragn is pascive in expiration, active in inspiration. While the diaplaragn is relased it presents an anched form, having followed the recoiling lungs upwards; but during its aetive state, in inspiration, it is struitencel transversely betreeen the inargins of the false ribs, and to this level the heart and lungs descend, while at the same time the ventral minacles give way, so as to allow space for the ventivl organs, the lungo latring encroaehed upon their situation. In foreed expiration, the alrdominal muscles are the principal agents; hut their power in contructiug the pubnonary clamber is exerted indirectly through the medium of the abdominal viscera, whicb, under compression, inpel the flarecid diaphragm upsards. The parts, whether principal or otherwise, performed by each memher of the respiratory system of museles, are hest defined by such injuries as unvolve the nerves which supply them; and of these kiads of injuries it is only necessary to mention a ferr, iu order to show by what agents the respiratory motion is chiefly performed.

In cases where the cervieal spinal cord has suffered injury aluve the origin of the phrenie nerves the whole system of respiratory nuscles innervited from suurces below such injury hecomes paralysed, and respiration ceases, thus preventing our distinguishing the more important respintory museles from the less so. When the seat of injury is at the junction of the cervicel aud dorsal spine helow the origin of the phrenic nerves, hut ahove tbose nerves which are distributed to the thoracic and abdominal museles, ordinary respiration is uevertheless performed by the diaphragm and the clasticity of the thorax independent of those muscles, but forced respiration is prevented. When the injury has occurred at the lower part of the dorsal spine, helow the thoracie nerves but above the abdominal nerves, we find ordinary respiration to continue unimpeded, and at the same time forced inspiration many now be performel, though forced expiration is hindered. Lastly, if the curd he injured at the junction of the lumbur and sacial spine, helow the thoracie and the abdominal nerves, all the movements of respiration, ordinary and foreed, are capable of being performed. From these freta, which, iu illustration of this point, I offer from my own olservation, I believe it maly be very plainly inferred upon what ngents the respiratory motions depeud iu chief, and which are the mere accessories.
On viewing the manner in which the muscles are arranged around the thoras, it must be evident that the power which they are cupahle of exerting in expanding this apparatus in the act of unppration is but very trifing, notmithstanding their numher and size. The fact is, that their principal force is otherwise expended; and their nction in imparting motion to the thoracie walls is lut secondary. The tmetion of the muscles upon the ribs is made at very disudvantageous angles, so much so, indeed, that in most instances the ayents and parts aeted upon lie parallel with encls other: A greater forec, hmovever; than that which they exert for the respiratory movenents would be superfirous. The intuospleric pressure upon the pulunuary mueous lining inembmne within the thorax, and externally upon the cutaneous sulthec, is, white the gluttis remains open, in exact equilibrimu; and to disturb this equilibrium requires no grenter amount of power than is necessary to cause one arin of a balance in equipoise to prepouderatce over the other. The free access of air to the lungs is requisite to the free action of the respiratory muscles, for so low is their power in expanding the thorax, that we find them as nseless, in this particular aetion, when the glottis is closed, ns if they were netually paralysed. Such being the state of the muscular apmamas as agents in the respiratory process, we find, on examining the pulnowary organs themselves, a simple and beautiful disposition of them, which mainly promotes the cascful performance of that process.
The lungs, not having (as I believe) muscular fibre as a component of their tissue, must therefure be wholly pussive in the reepiratery net. They are elustic but not contractile, and woulh remain iu their pusition altogether inert-unmoved by any effort even of the respimtory unseles,

Figures of plate If.

A. The right reaticlo if the beart - B. Origiu of the pminnonns artery. - C. Origin

 pectoral muscless cilt. - U. Carti)dges of the sixth ribe - V. Curtilyges of the sowenth
riba
but for the cirenmstance of the pleum which invests them being a shot stue closed on all sides, and collapsed at all poiuts. What the fulernm or point of suspension is to a balauce, the touching surfaces of the collapsed pleuml sne is to the thoracic machine. If the fulerum be disturbed from the clue line of gravity, or the pleural surfaces sundered from contact, the derangement of either machine is the result. The action of the respiratory museles tends to withdraw the parictal from the pulmonary pleura, mul so to create space in carum, lut on the effort the external air enters the langs hy the glotis, and cexpands those organs in such measure as to maintain the plenral collapso complete. Now, while this general contact hetween the pleura costalis and pulmonalis is not less perfect than if the lung and thoracie wall were structurally united, it is obvions that in their structural distinetness some necessary pnrpose must be served which mere union of the surtaces conld not supply. This purpose is to allow of a sliding motion between the lung and thoracic parietes, hy which the pulmonary tissue may he the more perfectly expanded; the lung adapting itself to the incrense of space occasioned by the dilatation of the thorax in inspiration. In furtherance of this end, too the lungs are divided into loher, which slide on each other; and the degree of this motion is indicated in the length of those organized hands by which the pulmonary and costal pleure are occasionally found adherent.

The complete collopse of the pleura is a condition, the nucleus, as it were of the principle npon whicb the respiratory apparatus is plamed, and according to which, all menbers of that apparatus subserve. The interior of the pleura in the healthy living thorax may be said to represent nihit. It is a state of less presential property than vacuum, for vacuum is space void, while absolute collapse is void spaceless. Upon this state a notor power-a cause-operates, and in the effort to disturh it disturhs the atmospbere on either side of it, of which disturbance the expansion of the lung is the result, of which result the chemical change of the blood again results, and hence onwards through all the links of the cireling elain of causation, illustrating (as closely as any phenomenon in nature enn he said to do it) the genesis of matter-the ab nilhilo ens gignitur.

The shape, mohility, and relative proportions of the tborax vary at different periods of life. In very early life its antero-posterior exceeds its transverse diameter, owing to the lungs being small, and the heart and thyuus gland being relatively large. During this early period, also, we find the vertical diameter to be comparatively short, in consequence of the small size of the lungs, and the largely developed state of the abdominal organs, more particularly the liver, which occupies nearly the whole width of the abdonen under the diaphragm. In the healthy, well-formed adult male, the size of the thorax, compared with the abdomen, is large, and corresponds with the voluminons lungs; the respiratory muscles, too, are now fully developed, and the whole thoracie apparatus presents an unequivocal sign of physical vigour, compared with which, as a standard, many pathological conditions may be detected. In extreme old aye, the thorax presents eertain characters wbieh may be regarded as strand-marks, indicative of the degree in which the vital tide has ebhed; the costal cartdnges bave become ossified, and the different pieces noeliylosed, so that the elastivity and molility of the thorax fail, pari passu, with the structural and functional decline of the lungs themselves. In such a condition of parts, respiration is carried on solely by the diaphragm and abdominal muscles.

Besides the pathological and congenital deformities of the thorax, there are others which are the effects of ait-the continued pressure of the curset, for example, causes the long flexible asternal cartilages to yield and dislocate permanently upwards, the liver, spleen, and stomach, so that the thoraeic space becoracs contmeted, the action of the diaphragin inpeded, and the summits of the lungs are in consequence protruded
considerably alove the level of the first ribs. The lung being thms foreed into contact with the subclarian and other large vessels heie situated, it seems to me prohable that the bruit or murmur heard through the stethoseope applied to this situation in pallid emacinted females is symptomatic only of this umatmal state of the parts, and is due either to the pulsatile action of those vessels against the top of the lung; or to the ohstruction of the cirenlation caused by the pressure of the instrument itself on turgid veins; or to the pressure of these vessels against some enlarged lymplatic bodies; or to the confluence of two main enrrents througb the internal jugular and subelavian veins at their point of junction in the innominate vein so close to the right auricle and ventricle, whieh latter, at every contraction, are known to send the blood retrograde to a certain extent throngh those vessels. At all events it would appear more reasonable to attribute the murmmr to either one or the other of these anatomical cincumstances, than to acconnt for it by supposing some peculiar state of the blood in the affection called chlorosis. The thomen of the adult female is maturally much wider in the base than that of the adult male, and altogetber exhibits more of the infantile proportions. The female form in general presents an intermediate stage of development between that of the child and the man, insomuch that the prominent character of the female body is abdominal l_{1} whereas that of the male body is thoracic, the pbysical conformation of the latter adapting him to manual labour, and that of the former suiting lier to lahour of another kind-parturition, for the easy performance of which, tbe unuatural, cramped-in bodiced bondage, is so ill ealculated.* While the beautiful is the fitting, and both features combine in the natural always, wbat more unseemly contrast to this state can the artifieial exhibit than the pbysiological condition of the contracted waist of the European woman, unless it be the eompressed forehead of the Carib, or tbe crushed foot of the Chinese.

The form of the tborax, and the relative position of its organs in their healthy state, require to be accurately determined, in order to give precision to the practice of auseultation and percussion, as a means of dingrosing cases of tboracic disease. In health the lungs expand into contact with all the costal parts of the thoraeic walls. On these parts being struck, the lung emits a sound characteristic of its structure; and its respiratory murmur is also discernible by the ear. But the pulmonary resonance cannot be expected to be uniform over all the costal region, for it must rary, hecause of the variahle thickness of the structures Which be upon the thorax, and also of the lungs themselves, betiveen whieh the large compact mass of the heart is plaeed. Over the region of the heart and that of the liver, which ascends hebind the lower ribs of the right side, the thin edges of the lungs whieh overlap those organs must yield a sound of a very different (shallow) eharacter to that emitted (deep) at the sub-axillary and dorsal regions, where the lungs are thick. Naturally, the right lung is shorter in its vertical diameter than the left, hut yet the volume of hoth appears nearly equal, owing to the fact that the heart inclining to the left side diminishes the transverse diameter of the left lung in a degree equal to what it exceeds the right in its vertical diameter: The shortness of the right lung is due to the circumstance that the liver protrudes the diaphragn into the right pulmonary eliamber, considerably above the level of the margins of the false ribs at that side. The narrowness of the left lung is owing to the presenee of the heart on the left side. These facts in remard to the healthy sounds demand therefore due consideration while conducting our pathologieal investigntions, sinee, for example, when an atropby of the liver or a hypertrophy of the spleen, a dropsy of the thomax or the abdomen, modifies those signs which are indicative of the natural healthy condition of the parts, we cannot, without an acquaintance with this condition as a standard of comparison, letect the exact difference resulting from disease.

- Tlat the thomecomabdoninal muscles are the principul, if, indeed, not the sole agente, in parluriout rantion, ean searecly, I think, be reasounily doubted by any of us Upon this point 1 have long siace satistried mesself, having takers opportunitice of noting the maked body of In that process, the uteluz (notwithstate anding ind thospital bed, but in her open felds, sub eata, In thut prowess, the uteruz (notwithstruding nll that the obstctricians wrould hnve us credit na to its purunome power in the expulsion of the feetus) is littlo more active than the stomuch is iu the elfort of vomiting, or than the bindder in woiling its contents. As to the questione, whether the gravid uterns be minschar or not, or whether those cords be or be not nerves, which buve beend dewerihed as trasessing this suhstance of the nterus in that state, suel questions may reunia undelermined so lang us anutomy demonstrates that the organ is not. supphied with uerves fryan the cerobro-spinal axis, is not, therefore, inder the salae verrous influence as the voluntary system of mascles, and so long as with our eyea we beo thase museles iu violent contruetion during the "boning-down" eflorts. The very nesessity, inderd, for the Ihlysinlogical researshtes of Jrademn Boivia berself (whose spontaneory cipinion is to the agency, degree, ard lcind of parkaricat motion, suight be muposed oll-suht cient), way he regurdel as good proof thast the uterns is but littlo netive in all its atates;

labour. That the organ possesses musenlar fibres and nerves we did not require to be informed by the personal dissections of that lady-savant, any more than we needed to know of the existence of the nerves and muscular fibres of the stommeh fud urinary bladder, but that those fibres in eitber organ ate capmble for nay other purpure than that of maintaining its form and giviog it tonicity may, I think, be disi risted. It uust, therefore, appear, that it is unow the agency of the thoracico-abdominal nuseles the genvid uterus depends for the expulsion of its contepts. And that this is the t ruth I ane so convinced as to bulieve that if, during purtarition, any necident could arise, which, without invelving other functions, would eut off uervous influene: from those muscles, tbe uterus, thougb not affected hy that accilent, would bo fomm, if not absolutely incert, yet incapable of itself to courulete the process-incapable of itself to make the "bearing-down" etforts. The natumal form of the uhelominal chamber and the unembarassed netion of the surronading muselea boing, therefore, so esseutinl to the easefial process of parturition, we can guess the state of those parts affer baving been subjected to a life of hubitual distortion; we can understand why Gisdled Fasbion (aborting in her houdoir) slrieks for hor inmaculate ncconclewr, while Gipsy Freelom (parturient in her ditch) makes no mone ado about tho matter thim is cow calving.

THE SURGICAL DISSECTION OF THE THORAX AND TIE EPISTERNAL REGION. DELIGATION OF THE PRIMARY AORTIC BRANCHES PENETEATING WOUND AORTIC BRANCHES. PENETRATING WOUNDS. PARACENTESIS. TRACHEOTOMY. LARYNGOTOMY.

The hmman body is deycloped in strict aceordance with the law of symmetry. All forms thoughout the animal kingdom exhibit the operation of this law. The general medinn line of the human bady marks the junction of its two equal and similar sides. The features visible on the cutaneous surface at, and on cither side of this line, owe their symmetry to the subjacent structures on which tbey are founded. The vaseular as well as the osseous skeleton displays symmetry; but whide the latter offers no exeeption to this kind of conformation, the vaseular skeleton present a few, and these, it will he observed, oecur at the median line, whicb, being the seat of metamophosis, miy therefore aeeount for their appenrance. In a surgical point of view, this law arrests our attention; for, as all lateral parts have their counterparts, the various operations requiring to be performed in respect to one side, have to be eonducted in a similar manner on the other.
When the integuments, cellular membrane, and superficial fascia are removed from the fore parts of the neek and thorax, we find the two sterno-mastoid museles, A.A, Figures 2, 3, Plate IV., eonverging from the sides of the neek towards the first bone of the sternum, w, into the upper and fore part of which they are inserted. Fron this situation, downwards, the sternum may be seen ceenpying the mesial line in the front of the thorar, and giving origin to the two great peetoral museles, wbich, arising also from the inner halyes of the clavicles, appear stretehed over the sides of the thorar. Inmediately above the stermm, and between the sternal paits of the sterno-mastoid museles, will be observed as depression, b w, about half an inch in depth, and corresponding with the thickness of the bone. At the bottom of tbis depression (episternal pit), the sterno-lyoid and thyroid muscles, $\# \mathrm{~J}$, will be found to arise from the back part of the upper end of the sternum, and to aseend to their: insertions iuto the hyoid bone and tbe thyroid eartilage. Between the two sterno-hyoid museles, which nearly touch by their inner borders, a eellular interval will be sece, marking the mesial line of the neek. All the museles now under notice are invested by the eervical fascia, $\mathrm{B} b$, which forms separate sheatils for them. On either side of the mesial line, the anterior jugular vein, $\mathrm{c} c$, formed by the junction of numerous small veins deseending from the fore part of the neek, will be seen to turn outwards beneath the sternal part of the sterno-mastoid musele, A, where it pierces the deep eervieal faseia covering the interual jugular vein, U , aud enters that ressel, or the subclavian, near their junetion.
In order to gain a view of the very important parts oceupying this situation, it will now be found necessary to remove the struetures above notieed. Tbis may be done lyy diriding the several nuseles at their middles, and turning nside their lower halves. The dense eervienl fasein will therely be exposed, stretching leneath tbose muscles aeross the episternal region, and as it covers the large vessels, will have to be disseeted off. On removiug this kaseia, and earefully clearing tbe part of the suljacent eellular adipose suhstanee, we find occupying the mesial line in front of the trachea, m, Plate III., a rounded mass, the thyroid Lody, L , wbieh depends almost toa level with the upper end of the sternum, and coneeals (espeeially when of larger size than nsual) by its outer horders the common carotid artery, II, of either side. By turning aside the thyroid body, we find the trachea, ar, lying eentral, entering the tborax leelind the sternum, and nearly touching the posterior upper margin of that bone. Close on either side of the trachea will be noticed the two common earotid arteries, it π, separated from each other at a distance corresponding with the width of the trachea; which latter, in the adult, measures ahout three quarters of an ineh in diameter. Where the two vessels appear belind the upper end of the sternum, the interval nt which tbey are separated is less than the width of the trachen, for they incline here a little in front of that tuhe. On the right of the tmelien, opposite to the right sterno-
elavicular junetion, the carotid of that side will be seen springing with the subclavian artery from a common truuk, N, -t the innominate artery. About balf in ineh (mine or less) external to the stemo-clavicular jumetion, appears the internal jugular vein, K , descending to join the subclavian vein. The latter vessel will the notieed lying parallel with the inner third of the elariele, and close behind that bone. In the interval, bounded by the earotid artery inside, the jugular rein outside, and the innominate vein below, appears the first. part of the subelavinn artery, having the vagus and some brancbes of the synuatlectic nerve in front of it. The right vagus nerve deseending this interval, closer to the carotid artery than to the jugular vein, sends its reenrent brameh looping around the sulelavian artery; whicb branch, ascending to the laryme, will be found behind the carotid, and oecupying the finrow between the tracher and asophagus. On the left of the trachen, and behind the left sterno-elavicular articulation, we observe the carotid and subelavian arteries emerging from the eliest, distinet from ench other, and baving the vagus nerve descending between them. The recurrent brameh of the left vagus nerve, tbough derived within the ehest, oceupies in the neek a position similar to the right recurrent nerve. On sepnrating the jugnlar vein stall more from the earotid artery, the subclavian artery will he noticed to give off numerous branches, two of the prineipal of whiel eourse in referenee to the region under notice. The thywid axis is a short yessel arising from the anterior surface of the subclavian and dividiug into three braneles, one of wbich turns inwards behind the common carotid, and is distributed to the thyroid body. The internal mamonary, derived from tbe lower surfnee of the subelavim, enters the thomax behind the eartdage of the first rib, w, and deseending vertieally belind the other costal cartilages, gives off intercostal and otber branches in its course, and terminates in the diaphrigm, nenr the lower end of the sternum. The braneles of the two iuternal mammary arteries inoseulate with eacb other behind the sternum, and with the intereostal arteries laterally. The two inferior tbyroid arteries inoseulate in the thyroid body:
The parts situated on both sides of the eervical mesial line are similar: in kind and in relative position. But withiu the sterno-clavicular junctions, the main vessels entering the haat and issuing from it present some features exeeptional to the symmetrical form. In order to expose them fully, it becomes neeessary to remove the costo-sternal forepart of the thorax, together with the inner thinds of the elavieles. After having severed the elavicles and the rils along the costo-ehondmul points of union, we find, on raising the pieees torecther from the thomx, the pleura adhering to their under surface, and requiring to the eut for their removal. This being recomplished, tbe interiors of the two pleural sacs lie open, with the lungs collapsed and tbe heart hetween. Before dissecting tbe mediastinal parts of the pleure from the heare and vessels which they enelose, if the fingers be passed upwards within the pleural sac as far is its summit to the inner side of the first rib, w, we nnay feel the subelawian artery, the inuominate artery, and the innominate veiu, through the memlirane, if those vessels have loen injected. About midway between the origin of the norta itsolf and that of its birst branch, the pericardium Lhecomes ndherent to the great vessel forming its outer cellinar coat. In a similar way tbe perieardium insests the vena cava, entering the right auricle, and thence, as a simple continuation of this membrane, may be traeed tbat wbich forms the outer covering of all the bloodvessels of the body, just as we find the lining membrance of thuse vessels to be an extension of that which lines the eavities of the heart. As listinet fiom both membranes will ho foand that which lines the pericardiam, and invests the beart, and which forms, like the pleura, in clused scrous sae, laving its line of reflexion corresponding with the points where the

FIGURES OF PLATE III.

A. Right ventricto of the Lieart. - A a Pericardiuin. - B. Orizin of pulmonnary nutcry. - $\mathrm{C} \mathrm{C}^{*}$. Ascending and transverse parts of tho aurtio sichl - D. Right anricle E. Remains of dectus arteriosus - F. Suprrior vean eave- G G. Luf and right in-

 musere, cut. - T. Briclial plexus of nerves - IVU, Seconil pir of ril)s cut -

commentary on plates ill. if in

perinardimu hends with the origins of the vens cave and both norte. Having parted the plemm from the median line, opened the pericardium, and removed the cellular membune from the primary vessels, these will apperer holding the following reclative position: The aorta, c, springing froms the left ventricle, and having the root of the pulnonary artery, B, in fiont of it, arelies upwards to a level with the sterunl chds of the second ribs. lying ollique to the mellin line, aud having the rise of the areh anterior in the thorax inmedintely behind and towards the right of the sternm, white the fall of the areh is on the left of the spine, on a level with the third dorsal vertehra. The innominate artery, N , arising from the finw-pant of the ardh, eonsequently occupies a planennteriors to that of the left carutid atery, 11 , which springs next in order, while the later vessel :uppenrs anterior to the left subclavian artery, 0 , which arises from the posturior decper part of the arch. These vessels, ascending in this relative position to the epistermul region, nppear here also at different depths from the auterion smface, those on the left side leing deeper than that on the right. The superior vena cava, k , will now be seen descending to the right anricle, close to the rifhts side of the first part of the nortic arch, and hetween the latter ressel and the mediastinal side of the right pleura. The right phremie nerve descends close to the outcr side of the vena cava, while the left phrenic descends in apposition with the left side of the antie arch nad the left ventricle. On traeing the vena cava upwarls, we find it firmed by the junction of the right and left innominate veins, G G , in front of the rout of the innominate artery. The right. internal mammary vein generally joins the upper end of the vena cava. The right innominate vein is muel shorter than the left, the latter having to cross from the left side in front of the artie branches to join the right rein. Euch innouinate vein is formed by the union of the snbelarian and internal jugular veins of its own side, the union taking place on the inner berder of the anterior end of the first rib, w, in front of the anterior sculenus mensele, F , close belind the stemal end of the clavicle, and outside the atcomproying arteries. While thus considering the disposition of these ressels in regard to the melian line, we diseover in what respect they form (xceptions to the general condition of symmetry; for nors the single innominate arteryappears to represent the two arteries (subclavian and carotid) of the upposite side, wherens the superior vena eava, on the right of the medinn line, has no counterpart on the left. Like the primary vessels, the vagns nerve on one side of the hedian line presents some features different to those of the other; thus the right vagus, descending between the subclavisu artery and vein, sends its reenrrent branch around the artery, and passes obliquely backwards and downwards, close to the outcr side of the immonnte artery, to gain the root of the lungs and the assphagus, while the leit vagns, descending hetween the nortic ende of the left curotid and subelavion arteries, behiud the left innominate rein, gets iutu apposifion with the right side of the aortic arch, and around this sends its recurrent branch to the laryin. Each ragus and the phrenie nerve of its own side will be found between the mediastival pleura nad the pericurdiun, where the later membrane invests the origins of the aortie. With regiect to the lymphutic system, it for the most part exhihits the symmetrieal arrangement, and maintains this cven in the region under notice; fir whilst the principal vessel (thoracie duct) of the left side enters the left inmominate rein at the angle of miun betreen the jugular and subeluvian vein, that of the right side enters the veins of that side at a sorresponding point.
The relutive position of the primnry vessels and nerres alove noticed is aurl its ordinarily obtains. But besiles those nomnal peeuliarities of form which we lizve seen then to exhibit on either side of the medinn linc, there nre those of an abmorinal kiad, and of by no means mafiegrent nccurrence, which, in a practical point of view, are very important to he remembered. These nittach chiefly to the arterics. The level to which the top of the antic arch rises varies considerably, bejng in some instances as high in the thoran as the first costal cartilagus; in others, ns low nearly ns those of the third ribs. According to these vuricties of 1 wsition will happen vurieties as to the length of the primary arteriws between their origins in the aorta and the level of the claviches. The point nt which the unoninate antery bifurcates varies very frequently, and of course, in such cases, the length not anly of that vessel itself, hut of its branches (subclavian and rarotid), will be found to vary uccordingly. Sometimes the innominate appears dividing at an inch or even more abous the line of the clavicle. Other times, that ressel is found to divide close to its origin in the aorta. Between these points, which mark the extremes, the yessel varies as to length in all degrees. The two arteries of the left side present in tike manner their own virictics. Therse vessels ordinarily appearing with
distinet nortic origins, ure frequently found to conlese and distinct nortic origins, are frequently found to conlesce and become one,
simnlating very closely the innominate on the other side. When either of the vessels require a ligature, such circamstanees, it will be obvions, must grently influence the issue of that operation.
On comparing the enrotid and suhelavian arteries on cither side of the median line, witb a view to estimate their respective conditions ns more or less fuvourable for deligation, we fiud, that wherens those on the left lie deeper than those on the right, the former being of the two more compliented than the latter, those on the right are shorter by the measure of the innominnte, from wbich they spring, than those of the left, whieh bave separate aortic origins. Judging from these faets, it appears to me that those of the right side nre less favomably cireumstnneed for sueh operation than those on the left, and for the following reasons:-1st, If an ancurism affect either the right earotid or subelavian near its origin from the innominate, it beeomes neeessary to tie the latter vessel and so cut off the eirenlation, as well of the braneh wbich is sound as of that whieh is disensed, whereas the separate condition of the two left arteries allow of that alone being tied which is disensed. 2nd, The foree of the eurrent issuing froun the herrt through an artery like the immomate, of so large ealibre, and situated direetly above the left ventriele, is more likely to disturh a ligature than the foree of that eurrent through cither of the smaller left vessels, situated as these are more remotely from the ventricle and receiving its impetns indirectly at a sceond angle. 3rd, The spaces occupied by the right and left vessels respectively being of equal area, the fact of the right vessels presenting in the condition of a comruon truak dividing into branehes, must neeessarily render enel of the three shorter than either of the two left vessels, and experience proves that the shorter the vessel the less likely is the operation of deligation to succeed. On the whole, I may olserve, that while it appears that a longer interval of the vessel betweeu the origins of large branches, coupled with a less degree of circulating force, are ndvantages for the operation, so the left vessels, presenting such advantages, are more favourably eireumstaned for the operation than the right, whieh do not present them; and tbat when the latter happen to resemble the left vessels in form, a stronger hope for a favourable issue to the operation may reasonably be entertained.
By now replacing the fure-part of the thoras previously removed, and rendjusting the several eervical museles, \&e., the manner in whieh they cover the primary vessels, nerves, and trachea may be correetly ascertaincd. Along the middle line, above the sternm, w, Plate IV., we observe the two sterno-hyoid museles, π, overlying the thyroid body, p , and both these structures, witb the intervening fascia, covering the trachea, o Q . A little external to this line, and just above the sterno-clavieular junetion, v , we see the sterno-mastoid overlapping the sterno-hyoid and thyroid, and the three muscles covering, on the right side, Figure 2, the hifurcation of the imnoumate artery, together with the vagus nerve, x, and lower end of the internal jugular vein, v, and on the left side the same vessels in the same manner, with the exeeptiou that the innominate is here represented by two separate arteries, R T , the earotid and subelavian. The innominate artery, Figure 2, Plate IV., it will be notieed, is, for its whole extent, from a point immediately below its bifurcation, covered hy tbe inner end of the claviele, v, and the upper pieee of the sternum, w. The aceompanying innominate rein is wholly concealed by the same parts. On the other side, the corresponding vessels, \mathbb{R} r, Figure 3, are covered to the same extent by the like parts. The grent difficulty of gnining a elear vicw of those ressels for the purpose of decligation depends upon that eireumstance. When, bowever, it is judged necessary to tie the immominate artery, the situation for the appliention of the ligature most eonvenient in all respeets is just below its point of bifureation, and this part is fortunately the most aecessible. Taking the sterno-elavieular junction, v, as a fixed point to refer to in nll stages of the operation, the ressel will he found behiud that part at a depth eorresponding with the thickness of the sterno-mustoid, Λ, sterno-hyoil, m, and sterno-thyroid museles, J. The incision which will be found most convenient for retracting the superjacent parts from the vessel is one whieh would eorrespond with the angle formed by the elaviele and the anterior horder of the sternomastoid inusele. The steranl parts of that musele, and of the sterno. hyoid and thyroid, will require to be divided, as also the fiseia, b, stretched heneath them. When tbis is done, common prudenee will dietute the necessity of revealing the vessel xather by the handle than the point of the scalpel. The lifureation of the artery should now be sought for; in order to muke sure of the ligature heing applied below that point, and if the bifureation do not appear above or on a level with the sternal end of the claviele, it is cither below that part or clse does not exist, owing to the subclavian and carotid arteries baving distinct aortic arigins. In the latter ease, the two vessels will have to be exposed, so as to be certnin that upon that one which is aneurismal the

ligature be placed, and, of eonrse, on the carliac side of the tumour. In operations upon these arteries, their most trifling deviation from the normal form is suffieicht to perplex with doubt the greatest surgeons.

Among the accidents likely to involve the thoracic organs, are panetrating wounds of the thorax and fractures of the ribs. As every part. of the thorax on hoth sides of the median line is rosted, and lined throughout by the plemra, it will be found that wherever an iustroment piccees intercostal spree to a sufficient depth, both the pleura and the lung hove suflesed injury. The sitnations where the pleura and lung may be wounded, mot throngh intercostal space, are at the root of the neek above the inner thind of the elavicle, and at the epignstrium and hypochondrinm ${ }_{1}$ as this-if the instrument penetrate downwards behind the inner third of the claviele, it will enter the top of the lung througb the pleura; and if it penetrate upwards behind the sternum or the cartilages of the filse rihs, it will enter the base of the lung through the diaphrygmand pleura. While the looly is in the ereet posture, if a small sword transix it horizontally from below the xiphoid enrtilage to either side of the eight th or ninth dorsal vertebra, it will enter the alylomen in front of the diaphragin, and enter the thorax behind that muscle. Again, if such au instrument pierce tbe body transversely from the seventh intereostal space on one side to a corresponding place on the other, it will truverse the hases of the two lungs in the thoras, and the summit of the ahdomen hetween tlrem immediately helow the tendinous niddle of the diaphragm; these facts being accunterl for by the arching form of the diaphraym in respect to the tborax and abdomen, both as to the transverse aud anteropesterior brections. The pleura lining the thomax as closely as a periosteun, will, in abmost all instances, be found ruptured when the ribs have been fractured and the broken ends displaeed; and in sueh cases, too, the lungs will generally have been injured at the same time; the latter circumstance being more hikely to happen if the lung have previously been adherent to the ribs at the seat of injury. If the pleural sae be ruptured by a broken rih, the lung being uninjured and the skin cutive, elfusion takes place between the pulmonary and costal parts of the membrane, and separates the two from contact in a degree equal to the amount of the fluid cftused, which may be either serum secreted by the plenra, or blood having its source from a ruptured intereostal artery. The nmount of the fluid effused prevents to an equal extent the expansion of the lung. If the hroken end of the rib rupture the pleural sac, and also the substance of the lung while the skin remmins entire, then the air of the lung eseapes into tbe sac of the pleura, producing the state named pneumo-thorax; and, in the same degree as the air distends the sue, the lung is prevented expanding. The air is in a case of this kind hable to enter the tisstres of the thoracie walls, nnd produce emphysema, either partial or general ; or it may enter the interlobmlar tissue of the ling itself, and render that organ permanently distended-a state us obstructive to the respiratory process as solidifieation or total collipse of the organ. If the plenra be freely opened from the cutameous surface, withont wounding the lung, the respiratory motions of the thomax canse tbe uir to enter the pleural sae at the same time as the air enters the lung through the bronchi, until, after a time, the air accumulates to such a degree in the sae as wbolly to ohstruet the expmasion of the lug. When the pleura is distended with fluid or nir, ocensioning tatal collapse of the lung, or when tbat organ is rendered impervious to the air by disease, the respiratory motion ceases at the side affected; in the former state the thorax appears unnaturally rounded, in the latter unnaturally flattened.

Fluid eflused into the pleural sue gravitates; furd therefore the operation peracentesis, required for cvacmating it, should he performed at a part, the most depending compatible with the safety of important organs and large hoodvessels. These requirenents may he hest seenred by making the opening at the upper margin of tbe middle of either the seventh or cighth rib. If the operation he neecssary on the right side, no organ but the lung exists in front of the instrument nsed, and the lung is removed to some distance fiom the thoracic wall hy the fluid. If the left side is
to he the seat of operatiou, the instrument enter's the plamal sae behime the heart. The intercostal artery pabsts almig the lown harder of the rib, and becomes of smaller size the firther it is from the spine, and the instrument is for these reasuns made to enter the thoms at the upper margin of the middle of the rib selected. In eases where pus is largely effused into the serous sac (empyenre), it may be that the hang has beeome adherent to the thomas at the place of aperation, and under such circum. stances the point of the instrunent. will, of course, enter the lung instead of the cavity eontaining the fluid. As the pulnonary and costal pleura may beeome adherent at various parts and in varions degrees of extent, so the fluid matter will also exist pent up in various localities, furning isolated deposits, like absecsses, and this condition will necessitute our selecting other places whereat to perform1 paraeentesis than that uhove mentioned. While performing tlus operation, care is to be taken to prevent the adnission of air into the pleura on evaeuatiag the fluid. In hydro-fharax, if the lung distorted by the fluid have not become bound hy adhesions in sneb a manner as to render the distortion permanent, that organ will rise into apposition with the walls of the thonne, according :1s the fluid is voided, and so prevent the entrance of air. In empyema, the dislocated lung, if become ngglutinated to the thurax in a false 1 position, and rendered disormanized throughout its snbstance in eousequence of disuse, will not expand as the fluid uscapes, and the entrance of the sir is then unavoidable. The thoracie organs exhihit occasiunally some remarkable instanees of dislocation occasioned by the plenritie effiusion, in one of whiel, I have noticed that the heart, followed by the eollapsed left lung, occupied in the right compartment of the thorax a position siunilar to what it usually has in the left.
Like other serous snes, that lining the pericardium is habie to hecome distended with serous fluid, or even purulent matter, and a pumeture may be required to evacuate it. As the pericardimn, like the hung, is closely invested laterally by the mediastinal plenre, and has the sternum in front of it, it is therefore, in most cases, impossible to penctrate the perieardium mithout opening the pleural sae at the sume. time. But there exists a small spmee in foont of the periewrdium, I_{H} Figure 1, Plate 1., at which, though the pleum may be present, the lung very seldom is. This space is at the left side of the sternum, where the eartilages of the fifth and sixth ribs join that bone. The left hang here generally tills to reach the median line. For the eracuation of flied from :all parts of the thorax, the opening is recommended to be made of a valualar form, with the olject of preventing as much as posible the ingress of air. To eflect this form of opening, the skin is to be dialmi tense to a point opposite that at which the pleura is to he entered, and lnving penetrated the chest at this point, and evacuited the matter, the skin, on being allowed to resume its former place, wall draw the entancous openiug aside of that in the pleura.
The parts which oconpy the median line of the neek, Plate $1 \underset{F}{ }$., Fignre 1, being distinetly prominent on the surfice, enable us to deternine with muels exactness their relative position. Those parts mumberel from above downwards appear in the following order-the chin, A, os hyvides, D, thyroid aml ericoid cartilages, is, thyroid body, 1 , and the top of the sternurn, w, the later forming with the two sternomustuid miseles the episternal hollow: Between the lower jaw aml as hyoides we expose (on removing the skin and ecllular membrane) the auterier parts of the dignstric minseles, $\boldsymbol{B}_{\mathrm{B}} \mathrm{B}_{1}$ lying on the mylo-hyoid nuscles, $\subset C_{1}$ of either side, the latter joining ench other along the sedian line. ln the furrows formed between those muscles and the horizontal ramus of the lower jaw may be obsurved the two submaxillary glands, $F F_{1}$ through whieh the ficinl arteries pass while sending offi their submental branches. Sume lympatie bodies and branches of nerves will also appear lying on the mylo-hywid museles moder the elin. On a level with the neper mungin of the thyroid cartilage the two carotid arteries bifurcating give ofl at this point the two superior thyroid branches to the thyroid budy: The carotid arterics will be now seen to lie close to the sides of the trichear

FIGURES OF l'LATE IV.

Figure I.
A $\triangle A$. Mental sylophysis, nod horizoutal ranus of lower jaw. - 18 B. Antarior parts of right and left dignastric nuwedes. - CC. Righlt auid leit halvea of nylo-hyoid musgele: D D D. Osdyoiles. - E E. Sub-maxillary glauds - F. Thyro-lypid minseles - GG. Ono-hyoids, cut. - H Steruo-lyyoids, eut. - I I. Thyroid cartilaye. - JJ. Sterno. hiyroids cut. - 15. Thypo-hyoid membranc. - L. ©nico. Hy,
 S. Iha
 of slermim. - X. Right and luft vigus nerve, $-\mathbb{Y} \mathrm{Y}$. Imefrior thyroid veins. \% z. Clnricular aul sturnad tevdous of siterno manstoid muscles.

Figures II. \& III.

All the parts, ecuept the fullowing, ure matiked as in Figure I.:
 Tecia. - Cec. Anterier jogalnr rail. - D. Auterior senlenus mulacte.
below and as they ascend to a level with the larynx to be bere separated from each other at, a much wider interval at the same time having the laryngeal pieces projecting prominently forwarls from them. Tbose two vessels, besides diverging in their ascent, recede from the fore-part of the neck backwards, while the laryugo-tracbeal apparatus occupying a centrad position hetween them, will be noticed to taper towards the root of the neck it desiending and to recede from before back wards. On a level witb the top of the sternum n_{1} the tracbea passes deeply between and belind the plane of the two carotids, whilst lower down hebind the sternum, tbe innominate and left enotid approaching overbe tbe fore-part of the tuhe. The trachen near the aternum is said to incline ratleer to the right side of the median line; but this appentance is owing to the circumstance of the innominate arfery lying in front of it. Tiewing these general relations of the Iarynx and trachen, it will appear that the nearer to the larynx trachontamy is performed, the less bable are the carotid arteries to be injured, provided the median line directs the operation.

Between the lyoid bone ${ }_{1}$, und the thywoid entilage, \mathbf{l}_{1} tbose two jarts will he seen connected by the thyro-liyoid bgament, x. The lip of the thynid cartilage projects subeutaneous ; so likewise does the middle part of the cricaid cartilnge N_{1} below the thyroid. Between the two cartilages occurs a small interval, L_{1} closed by a fibrous nembrane, and guarded loterally by the pair of small erico-tbyroid muscles m $_{1} \mathrm{~m}$. Below the cricoid cartilage nppear three or four of tbe npper rings of the trachea OO_{1} and next the thyroid hodly r_{1} covers the tracbea nearly as low down as the top of the sternum. W. In some instances ${ }_{1}$ the tbyroid body exists as two distinct halves, one on cach side of the trachea,--a state wbich is nornal in the mammalia and in the human foetus s_{1}-in otbers s_{1} a middle lobe (the isthmus) connects the lateral lobes at the middle liue; cases have also been observed in which one-half of the tbyroid hody was ahsent, but in no instance (os far as I am aware) has this organ been found altogetber wanting. In general, tbis organ appears as a single, tbick mass lying in front of tbe traclea, obviously as a necessary appendinge to the vocal apparatus, and serving, as I believe, for the sole purpose of varying the dimmeters of the clastic air-tube inder pressure of the sternolyoid, sterno-thyroid, and omo-hyoid muscles.*
Considering the relative anatomy of tbe trachea, it must appear that the most eligible situntion for performing tracbeotomy, is at tbe middle line of the upper part of the tube, of oo where it is most superficial, inmediately below the cricoid cartilage. If the operation be performed at any puint below this place, the instrmment will bave to penetrate the thyroid body; and koowing how liable that part is to vary in size, aud what Iarge vessels (arteries and reins) pernente its substance, besides the deptb at which the trachea lies hehind it, the dangers thus incurred
become evident. Below the thyroid body the trachea, Q_{1} may be regarded as not safely accessible e_{1} ou account of its depth ${ }_{1}$ its being so closely embraced by the carotid arteries, $n R_{1}$ and also hecause of the frequency with whicb large thyroid arteries and veins are found to lie in front of it t_{1} those ressels directly communicating witb the primary vessels of the heart. In the aet of deglutition, the muscles draw tbe Iaryn x_{1} traches ${ }_{1}$ and witb then the tbyroid body y_{1} towards the lower jaw. Then for the moment ${ }_{1}$ there occurs an interval between the sternum and the thyroid body, at which the trachen is accessilile; but still, no one who is acquainted with the relative position of the important hloodvessels occupying the epistemal region, will attempt to take that momeutar'y opportunity for opeuing the trachea at tbis interval, while tbe operation may be performed with more ease, safety, and in almost all cases witb equal effect, below the ericoid cartilage.
For performing fracheotomy on the upper part of the trachen, it is only needed to make a perpendicular incision au inch long, exactly at the median line, between the cricoid cartilage and the thyroid body. The rings of the trachen having been exposed, we may, by pressing them Interally hetween the fingers, render tbem sufficiently resistent for dividing them with the point of the scalpel. In the position indicated for this operation, no vessel of nny great importance crosses the line of incision. While opening the tracbea here, it can he steadied by means of the laryux; but lower down, the tracbea, being more moveable is apt to swerve from the point of the instrument, and tbereby endanger the carotid vessels. In tbe infant, the trachea is more closely embraced by the carotids; and being relatively smaller, more mohile, and shorter tban tbat of the adule, tracbeotomy is more difficult to perform in the former subject.

Laryngotomy is performed at the crico-tbyroid interval, x, wbich may be felt as a small depression at the median line, just below the thyroid cartilage. In this place, between the tivo little crico-thyroid muscles, which are covered by the sterno-hyoid, the opening may be made with little trouble, the laryngeal pieces being resistent tbemselves, and rendering the crico-thyroid membrane sufficiently so. A small artery derived from the superior thyroid and an accompanying vein are frequently to be found crossing the median line at this parit, and are liable to be divided in the operation. In some enses, that artery is of considerable size, and capable of causing when cut a troullesome hemorhage. The several pieces of the larynx being in young subjects cartilaginous, and in aged ones osseous, are circumstances having certain influences over the mode of operating. Even the upper rings of the trachea are subject to ossification in advanced life. In the thyroid body, likewise, ossific matter is
liable to be deposited.

* Whe use or funetion whel I here attributo to the thyroid irody appears to me to be the only one for which sutwure iutembs it. Aml of the correctness of that vew I ane myself on fully cansjueed, that not only do I subscribe to the genemal acknownidgueat that all the

 that view. The pueating we to the 1acaning of tha cheroid boily resolves itself inta these two furns:-- Ts thate organ a gland, und, if so, whate is its speciall ohject? Or, is that organ not a platul, thed, if uot, what is its use, if it huve any use 7 Now, to definc a glandular urgan
 formas subesticut ho n prartioulur mode and parpose of secretion, Bichat, in his definition
 numal; fir if we vould refrain from no indulgence in trauseceudental pisions, this limitation
 ghandur mystems by smme chumeter or other, thus defining the chole animed as a glandular ronglonemutient. In what part of the anthan, forms is there not a flude seereted diferent from the bload I If this fingetiun onsuot he lesuicd of any part, then, while seceretion alone samy
 thyraus boily, the renal eapsulea, the prostate, and the thyroid body. But it is orident that this auhoission does not elose the ghestion ons to the particular siguifiention of either of those orgaus Nor will it allow we to namo thema go the particalar signifiention of either of those to sueb organs as tho salivary bodies, the lirer, tho pancrens, the liducy, the testicle, \&e., whith we bud to le agents elnborating from the same kind of thuid- bide blow, the ethercle, \&ce, of diflervut pinjurtics, unl ponsiug by finans of exerutory docts those Duids ont on tho five

 theivent in nuy; apprecinble quality frozu that of thes common cellelar mesubrane Or, if it thees, ns the micruserpists woukd have us belliev, theumben cetlelar membrawe orb, if it of photh of jts looing no there hypothedis they ind secretian, and while they are in seareh vessmbling a glavid, is a glend, und thoush indulge, that the dhyroid body, outwardly asworvents sersing as ductz", let us the whing duethess has its secretion "trakim up by ileory she nasocinted the illustrious unmeannine other thearios. Wisth the ginudulor
 H, frimhter, Ihaler, Meekel, aul Crimoilhier, de. Uttimi, Lalouette, Gunz, Schnidtmuller, Fuitiug to wemonstinte the ghtandular welure

of Mr. Simon. That observer, to whose sesearches, extending through the four vertelarate classes of unimals, the reapectinl consideration of arnatomists must be for ever due aksigna to the thyroid body the turaction of n "divarticulum to the cerobinal eireulation," sand founds his theory mainly on the circumstance that the thyyroidenl arteries arise in close proximity
to the cerebrul. Of this view I need only say that while pelusieg the to the cerebral. Of this view I need only say that while perusing the janges of his philosophical treatise, I eculd not repress the suggestion that not only do the thyroideal niteries arise elose to the carebral, hut the bruelial arteries do the sanye nud yet we lo not regard the amo us a "cerchnal diverlienlum," thongh we know it to net perhajs tor often in that capacity. In short, in the words of Prolessor Sharpey, may be rad the sum of all that is at presont kuown respecting the thyroid body-"from its general appearance to the glandular Its fusction is untrabis; hut owing to itand; but it possesses no system of exeretory ducts. laymox, it is usually described with that organ, and has weing the rineipal cartiluge of the From my own abservations I am led to couchudo that the thythid tome layroid." necessary to the production of varation of tone in the wocal apparatus, as the tongetion as is mecessary to cffect the rariation of speech-sounds. The facts whiel the tongue itself instivenent is a monotarue thil view are bricly these:-1st. The sound of a read mensical is yet an inteymat part of tit: and thel by the stoplecy ; that koy, though not in the instrument is yet an intermal part of it; and the same may he sain of the thyroil body in roference to the eoodsh temperatus. 2ud. All ausmals vocal by a larynyo tracheal organ, passess the thyroid budy lying ypon the tracher, which tulhe being clostie is suscentible of prossure from the thyroid body, actat upos by ths superinpased micectes. Those maseles, besides being yountary, have also a consmalal motion in roference to the vocal oryasm, an! aet like fingerd on the trachecl pipe cherough the mediunn of the thyroid body. 3rd. If the thyroid werc of themse resistent solid structure, it would not be so well adinited to aiter the diameters of the trachen, thanforc is the structure of the thyroid a congories of clastic eells, commanicatiug imith
 Uourhesels. 4th. The wecel uryman undergoes a change at pilberly; so does the duproid woilh mone of the thyputheration in the tone of toice as a conscgnence. 5th. Amormal entargre mone of the thyroid (goitre) is a state occnaring wore drequently at mibortis, rad evidengco ins is refcrmes to the fall evolution of the bexurl orgaks at tlint poriod. The and evidently aflect of this state is (be it well alserved) all over degres of pressure on chat vary dangerons trachect, an udich tha thyroid body, when of normant mopoportions, acts, wudex tevery organ-The pant to jorfonn. If the of vicke, unil this, I conecive, is function important enongh for tho part to porfonu. If the fiew which I now promulgate respecting the thyongh for tho Whathy of the notice of the Physialogist, it will sorve some purpose the thyroid bouly be
 which ly operation no detrinent can accrue to the ceonaney, thing, from the mutiation of

THE SURGICAL DISSECTION OF THE SUPERTICLAL AND DEEP CEEVICAL AND FACIAL REGIONS. DELIGATIO OF THE CAROTID AND SUBCLAVIAN ARTERIES, JUGULAR VENESECTION. ARTERIOTOMY, \&c.

Whan the side of the neek is extended, it presents a quadrilatemal shape, appronching to that of a square. The boundaries of this region are formed anteriorly by the cbin, larynx, trachea, stemum, and other parts occupying the medinn line; postcriorly by the occiput and shoulder, with tbe trapezius and other muscles cxtending between these two parts; inferiorly by the elavicle; and superiorly by the horizontal ramus of the lower maxilla, and a line produecd from tbe angle of that bone to the occipnt, The latter boundary limits the facial region inferiorly. The cervical region thus marked out is divided diagonally by the sterno-mastoid muscle, $\mathrm{F}_{\text {, }}$ Plate V., into two trinngular spaces-an anterior and a posterior. In the anterior space, KDEF, are sitnated the common carotid artery, P, Figure 2, and its branches, together with tbeir accompnnying veins and nerves. In the posterior space, KSG L, are placed tbe outer parts of the subclavian artery, v, Figure 2, and vein, their branches, and the brachial, w, and cervical plexus of nerves, 19-20. The forms of both these spaces are traceable beneath the integuments.

On removing the skin fiom the side of the neck, the face, and the upper part of the thorax, we expose the thin suhcutaneous platysina-myoides muscle, D, Figure 1, which will be obscrved to veil alinost completely hoth the cervienl triangles. The fibres of the platysma are dirceted slantingly from tbe lower part of the face, where tbey blend with the muscles of expression, downwards and outwards to the upper part of the breast bclow the clavicle; along its posterior border, which is connected with the superficial fascia eovering the posterior triangle, the subcutnneous external jugular vein, i, may be seen to descend; while autcriorly, along the median linc, the platysma inuscles of opposite sides approach and are connected in this situation by the superficial fascia investing tbe sternolaryngeal muscles. Considering the form, extent, connexions, and position of the platysma, it would appear to serve various uses:-being attached to the skin of the face and neck, it can niter the appearance of the surface of those parts, and may henec be classed with the cutancous muscles of expression; being stretched over the vocal apparatus, it may assist other museles in their action for varying the tone of the voice, and may also serve to eject the secretion of the salivary glands which lie beneath it. When the platysma and superficial fascia are remored, the several parts, whicb, by projecting on the superficies, determine the form of the neck and face, and become as guides to the relative situations of the more inuportant bloodvessels, nerves, \&e.e, are bronght into view. Of these parts the stcrno-mastoid muscle is the principal, having, thronghout its whole extent, from its mastoid origin above, to its clavicular and sternal inscrtions below, a close relation to the carotid and subclaviau vessels.
The stcmo-mastoid musele extending between its origin and insertion diagonally through the side of the neck, is maintained in that position by the cervical fascia, wbich forms a sheath for it. The superficial layer of the fascia is stretched upon it; the deep layer is heneath it, and forms, in this situation, a shenth for the principal vessels. This disposition of the fascia may he best ascertained by examining it at the anterior and postcrior margins of the muscle. Tracing the fascia from these points, both its layers stretching over the two surgical triangles will be found to ensheath also the adjacent muscles, and other parts. At the root of the neck, the deep layer of fuscin follows the snbelavian vessels
under the clavicle into the axilla; and at the upper part of the neck it forms a deuse capsule for the parotid glaud, c_{1} Figure 1_{1}, hehind the angle of the jaw, where it is connected with the stylo-lyyoid and maxillary lignments, and serves to protect the carotid arteries in this place, Commencing, apparently, in the parotid gland, tbe external jngular vein, r, will now be noticed descending obliquely hackwards and downards over the middle of the sterno-mastoid, following the posterior inargin of that muscle to near the level of the clavicle, and piercing the fisceia to join the subelavion vein. In this course the external jugular is accompanied by hranches of the superficial cervical plexus, which may be scen to emerge from belind the middle of the posterior border of the sterno. mastoid, one of the ascending liranches, 19, Figure 2, having a relation to the upper part of that vessel, while the descending branches, 20 , follow its lower part. Where the vein crosses the sterno-mastoid, jugular vonesection is usually performed, and in this manner:-the thunb of the left hand is to be pliced on the vessel lelow the point which is to be opened, and the vessel being thereby steadied and distended ahove, an incision is to be made in it in the direction of the sterno-mastoid, thus dividing the platysma fibres transversely, which, on retructing, render the renous aperture patent, By now dissecting the superficial fascin from the sterno-mnstoid and the regions hefore and behind that musele, we bring partially into view other important struetures.
Between the clavicular and sternal parts, $k: k$, Figure 2, of the sterno. mastoid, immediately above the inner end of the claviche, appears a small interval closed at the hack by the sterno-laryngenl muscles and the deep fascia. Opposite this place, and covered by the structures now named, will he fonnd the innominate artery dividing into its carotid and sub clavian branches; towards this locality, tbe internal jugnlar, subcliavian, and anterior jugular veins converye, and here also the vagus, the phrenic, and brunches of the sympathetic norve descend in front of the first part of the subclavina artery. Traversing the neck from this place, the tro innin arterics and their attendant veins first appear from under cover of the muscles the subclavian vessels in the posterion trinngle, and the carotid vessels in the anterior one.
The posterior cervical triangle is hounded by the sterno-mastoid musele, к, Figure 2 , before; by the clavicle, s, below; and hy the splenius, 1, and trapeczius muscle, c_{3} hehind. In clearing the cellular substance from this place we meet with the ascending and descending branches of the superficial cervical plaxins of nerves, the former being distrihuted overthe occiput and about the ear, tbe latter to the integuments of the upper part of the chest and the shoulder. Soveral lymphatic bodies $\mathrm{H}_{1} \mathrm{H}_{1}$ and, near the clavicle, some large veins crossing the part in various dircetions to join the lower end of the external jugular vein, will also appenr. The scapmlar division of the omo-hyoid nusele, x_{1} may now be noticed to subdivide this space into two compartments-a superior and an inferior, in the latter of which are located the principal ressels and nerves. This inferior space, much smaller than the superior, is bounded before by the clavicular part of the sterno-mastoid and the anterior sealenus muscle, U_{i} outside, by the trapezius musele; above, by the omo-hyoid; and below, by the clavicle. It is in this pluce that the operation for tying the subclavian artery in cases of axillary ancurisnl is

figures of Plate V.

Figure If.

Figure 1.

A. The zygemur. - B, The masceter musde - 0 . The partid glnod, c its duet. -

 sterno-mastoid muscle. - L. The eqpenius capitis musole. $-T$, The fiscia. -1 . The occipito fromalais apponemrosis. - 4. The tomporas nuloneurais - 5 . The superier nuusal wuscle. - 6. The niterior numal muscle, -7 . The orbicularis ocemli muscle. - 8. The zygonatio muscele. -9 . The luccibntor miscle. -11°. Tho fucinal vein. -18 . Ocerpital artery. - 10...Tho oceipitalis minor and surientaris manguns branches of the superticial artery. - 10%. Tho occipi
cervient plexus of neerces.

All parts, excegt the following, ane taarked sa in Figure I.

 -V. The asielervian artery. - W. The bruchial plexne - X. The onoohyoid miscle. Y. The anterior jugular vein. - 2. The sterna-hyoil muselea - 2. Tho finnthlis messle 3. The orcipitul wisclo- - 10. The eleppeciar anguli uris mascle. - 11. The fivid artery, 12. The supatior thy roin artery. - 13. The linguad artery. - 16. Tho temp 4 moranaillarg attery. - 15. Tho intermil-zunzillary artery. - 16. Thw telliparal artery. - 17. The portio-durs nerve - 19.20. The superticind cervicul plesus - 21.23 . The pasterior scapular ctim nud artars. - 23. The gapm-sapular artery: -24. The thym-hyyonl muscle 23. The ot glo-hyoin maceles - 20. A subneatal lyuphatic lowdy.
usually performed. In order to expose that vessel, and the accompanying nerves, \&c., it is required to dissect the deep layer of the fascia, and subjacent cellular substmee. This being accomplished, we now find crossing the area of this small space, besides the superficial reins and nerves already notieed, one or two large branches, 22,23 , (transversalis colli and supra-seapular, ${ }^{\text {) }}$) derived from the subclavian artery, beneath the sterno-mastoid, and passing outavards to the shoulder. Ou turning aside these arteries, and the external jugnlar vein entering the fore-part of the spaee, tbe subclavian artery, \mathbf{V}, will be seen emerging from under cover of the anterior scalcnus muscle, u, having the brachinl plexns of nerves, w, on its outer side, and giving off the posterior scapular branch close to the scalenus. The main artery will now be noticed to traverse the angle formed by the clavicular portion of the sterno-mastoid and the middle of the elavicle; it here appears generally for only nhout nn inch in extent, lying deeply, and its upper part, wbicb rests on the first rib helind the sealenus, being deeper than its lower part near the claviele. The subclavian vein does not in this situation closely follow the course of the artery. The rein lics below the level of the upper margin of the clavicle, while the artery approaehes this position from a point ahove that boue. The anterior scalenus mnscle separates the two vessels behiud the clavicular part of the sterno-mastoid-the vein lying in front of the scalenus, and between it and the clavicle.
The form of the posterior triangle is varied by the following circum-stanees:- When the trapezius and sterno-mastoid museles have their elavienlar attachments hroader than usual, they approach ench other, and so eontract, or even eover the spaee. When those parts of tbe muscles are narrower tban usual, the area of the spaee is widened. The omohyoid, when lying as low as the clavicle, or arising fiom that hone, as it occasionally does, covers the suhelavian artery, and the slape of the locality is then obliterated, in so far as that muscle does not serve to hound it. The scalenus muscle is not suhject to vary in cither form or relative position. The external jugular vein has been found to descend in front of the clavicle to join the cephalic vein entering the peetorodeltoid interval; and the latter vessel, too, lins heen seen to ascend over the clavicle to join the external jugular in the posterior triangle in front of the sulblavian ressels; these vascular varieties are, however, very rave.
The antcrior cervienl triangle appears having its hase represented by the lower masxilla, n , Figure 2 ; its apex hy the sternum, \mathbb{F}; and its sides hy the stemo-mastoid behind and the throat before. On dissecting the fascia which covers this rergion we meet with the anterior portion of the omohyoid muscle, x^{*}, wbich, ascending from under the middle of the sternomastoid to hecome attached to the hyoid bone, will be noticed to divide this locality into an upper and lower space in a manner similar to tbat in which the posterior balf of the muscle divides the posterior trinngle. The lower space is the episternal region already descrihed. It is traversed hy the anterior jugnlar vein, \mathbf{Y}. The upper space, in wbich the fascia appents thick and dense, is bonnded by the lower jaw-hone ahove; hy the sterno-mastoid muscle behind; and by the omo-liyoid and anterior part of the dignstric musele, \mathbb{N}^{e}, in front. Here we find a uumher of lymplatic hodies and veins, situated chicty along the anterior horder of the sterno-mastoid on the shenth of the carotid artery. The apex of the space formed hy the decussntion of the sterno-mastoid and omo-hyoid is opposite the cricoid cartilage, and lere the common carotid artery, \mathbf{P}, enters it from inder cover of the sterno-mastoid, and, enclosed in its sheath, which is forned of the fascin, ascends to a level with the upper margin of the thyroid cartilage, E, where it divides into the external, Q and internal, bi, carotid brancles. Overlying the sheath of the carotid in this sitnation, the lower end of the facial vein, 11°, will be found passing to join either the external jugular on the sterno-mastoid or the intemal jugular beneath that muscle and behind the carotid. When the lyuplatic bodies, veins, and small branches of neryes which cover the sheath have been renored, the sheath opened, and the fascia and cellular mombrune cleared from below the angle of the jaw, the more important stinctures here situated are in view.
The common carotid hifircating opposite the thyro-lyyoid interval will be now observed to send its branches radiating in all directions hencath the angle of the jaw. These hranches, with the accompanying veins and nerves, have such numerous and comple: relations as to require mach care in dissection. The sterno-mastoid muscle, passing ohliquely hackwards and upwards to the inistoid process, leaves most of these vessels and nerves uncovered by it at this situation. At their points of origin hotb the exterual and internul carotids may he discerned, since they are alike uncovered hy the muscles; but further upwards both these vessels become overlaid by the digastric, N , nad stylo-hyoid muscles, 25 , and by the parotid oland, e, Figure $\mathbf{1}$, in the temporo-naxillary fossa, and
the sulh-maxillary gland, M, Figure 2, under the angle of the jaw. The internal carotid lies deeper than the external in ascending the temporo-maxillary fossa. Here hoth vessels, closely followed by their respeetive reius, are further complieated in their relations hy many important nerves-viz., the vagus, 6, Figure 1, Plate VI., descending hehind them; the ninth nerve, 8 , winding outside around them; branches of the fifth passing among tbem; the sympathetic, 5 , on their inner side; the glosso-plaryngeal crossing hebind them above, and the portio dura, 17, Figure 2, Plate V., crossing outside them through the substance of the parotid, a bittle below the eondyle of the jaw. The internal carotid here nseends elose in front of the vertehral column, against whicb part it may be eompressed by the fingers. The external carotid is directed somewbat forwards from the vertebre, and soon after its origin divides into numerous hranches, to trace which it hecomes necessary to remove the parotid and sub-maxillary glands. This baving heen done, they will he seen to pass to their destinations in the following order. The superior tbyroid, 12, Figure 2, Plate V., arising from the forepart of the common carotid near its bifircation descends to he distrihuted to the thyroid body, after giving a hraneb to the larjox tbrough the thyrohyoid membrane and another to ramify on the hyoid bone. The lingual, 13 , which arises close above the great cormu of the hyoid hone, and soon enters the substance of the tongue, under the hyo-glossus musele. The facinl, I1, which arises with the lingual, and passes in a tortuous course upwards und forwards through the suhstance of the sub-maxillary gland to the lower jaw, over which it turus in front of the masseter muscle, $\boldsymbol{B}_{\text {, }}$ to gain the side of the face, wbere it ramifies into labial, nasal, and orbital hranches. Tbe tortuous length of this vessel is evidently to allow of the free motions of the lower javs. These three brancbes arise from the external carotid anteriorly. Three others spriug from tbat vessel pos-teriorly-viz., the oceipital, which passes upwards and backwards heneath the origins of the digastric, the sterno-mnstoid, and splenius capitis muscles, to reappear superficial on the occiput, 18, over which it ramifies in company witb the occipital nerve; the pharyngeal, which, deeply situated, ascends the temporo-maxillary fossa to the hase of the skull; and the posterior aural, distributed as its name implies. The temporomaxillary branch, $15,16-$ the proper continuation of the external carotid -passes through the suhstance of the parotid gland in company with the vein wbich forms the external jugular in front of the ear. In tracing the temporo-maxillary artery through the gland, it will be seen crossed externally by the portio dura nerve, 17 , whicb here forms a plexus, whose branelies ramify upwards over the temple; forwards, over the side of the face; and downwards, heneath the lower jaw. A little helow the condyle of the jaw the artery gives of the transverse facial branches superficially; the internal maxillary branch deeply to the parts in the pterygo-maxillary fossa, and the temporal branch, which, after ascending for half an inch above the aygomatic process, forms two or three principal subdivisions to ramify in all directions, anastomosing with the frontal arteries on the forehead, with tbe opposite temporal over the vertex, and with the post auricular and the occipital hehind. The temporal aftery and its suhdivisions are superficial, and may be easily incised or compressed against the head in any part of their course. The facial may be best compressed where it passes in front of the masseter. The anatomical relations of the parotid and sub-maxillary glands are so very important, that when either of these parts requires complete extirpation, some principal vessel or nerve must unavoidahly he divided in that operation. But while for an injured vessel, however large, we have the remedy of a ligature and the estahlishment of collateral circulation, for a divided nerve there is no remedy. The portio dura nerve cannot possibly escape division, either in part or wholly, when the parotid is the sulject of operation; the consequence of which will be paralysis of some or of all the muscles of expression to which the nerve is distrihuted. The masseter, the buccinator, and both pterygoid muscles being furnished with notor branches of the fiftb nerve will of course not be affected. The orbicularis oculi muscle, supplied prineipally by the portio dura, hecomes paralysed, though not completely so, owing to its having some terminal is braches of the third motor nerve distrihuted to it. The parotid gland is moulded to the temporo-maxillary fossin, sinking in this place as deep as the internal carotid artery and jugular vein; its external surface is different parts innal surface is very irregular, and corresponds to tbe many different parts on which it lies. The masseter muscle and ramus of the jaw are nearly covered by the parotid, the duet of which, issuing from anout its middle, crosses the masseter and turns inwards in front of the anterior border of that muscle at the buccal hollow, where it pierces the the last molar tooth of the upper jaw.

COMMENTARY ON PLATES Y: VI \& VII.

appears of unusually large dimensions, renching backwards under the lobe of the ear coveriug the upper end of the sterno-mastoid muscle and depending below the angle of the jaw where it identifies itsclf apparcntly with the sub-maxilary gland. In the situation of the parotid duct deep incisions should be avnided ${ }_{1}$ for a wound of that duct occasions salivary fistula. The sulh-maxillary gland being traversed by the facial artery, being laid upon the lingual nerve and artery where these are about to pass under cover of the mylo-hyoid musele, and being overlaid by the facinl vein, are circumstances to be remembered when that structure is the subject of operation. In elose connexion with this and the parotid gland will generally be found several sranll lymphatic bodies ${ }_{1}$ which tatter, when affected with disense, may present an appearauce as if the glands themselves were in that condition.
The scalp and integuments of the face are very vascular, much more so than the skin of most other parts of the body. The growth of the hair is the cbief necessity for this vascularity. The faee is largcly supplied with nerves, branches of the sensory fifth pair and of the motor seventh pair. These form over the face a web of meshes so close tbat it becomes impossible not to divide some of then in making incisions here for surgical purposes. Considering the importance of the muscles of facial expression , we should in order to avoid paralysing them, make all incisions in this situation of as limited extent as may be. The nearer the supra-orkital, infia-orbital ${ }_{1}$ and mental foramiua the parts are dividet ${ }_{1}$ the more liable to be wounded are the primary branclics of the fifth nerve issuing through them. The nearer the front of the tuhe of the enr the incision is made, the more likely are the prinury branches of the portia dura to be eut. The vessels and nerves of the scalp ramify in it over the surface of the occipito-frontalis aponeurosis. The sealp and aponeurosis are firmly adherent and move together while tbe latter is but loosely eonnected to the cranium. As the aponeurosis covers the entire surface of the vertex, extending between the aural muscles laterally and the frontal and occipital muscles natero-posteriorly, so matter when formed between this structure and the pericranium should be voided by timely incision, lest it spread, breaking up the loose meshes of the cellular tissue which connects them.
In order to expose fully the carotid and subclavinn vessels with their accompanying nerves, it is required to reniove the sterno-mastoid, the lower parts of the sterno-laryngeal muscles, and the faseia beneath them. The sterno-mastoid musele baving been removed, we notice that the anterior and posterior triangles into which it served to divide the neck ${ }_{1}$ appear thrown into one common region. Plate VI., Figure 1. The fascia may be now traced continuous over all parts of the neck, from the mesial line iu front to that behind; and from the clovicle to the lower jaw. In a distinct sleath of the fascin, the omo-hyoid, s_{1} like all the other nouscles, will be seen enclosed, and still holdiug its position in subdividing the surgienl spaces, as already described. The tendon m^{*}, which comects the seapular and hyoid portions of that muscle, passes over the earotid vessels, througl a loop of the fasciu, in which it moves freely, and by which it is so bound down, that its anterior part forms nearly a right angle with its posterior-an anatomieal feature similar to that exbibited by the digastric muscle looped to the hyoid bone above, and evidently for a similar purpose $\mathrm{i}_{\text {t }}$ the aetion of both museles antagonising, the latter in elevatiug, the former in depressing the larynx, in deglutition, and voeal motion. Along a line, reaehing from the teuporo-maxillary fussa to the sternal end of the clavicle, if the fascia be now carefully slit open, and its cut margins turned aside, the carotid vessel s_{1} FEDC C_{1} with the vagns nerve, 6 , between them will he exposed and their sheath seen to be formed of processes of the fascia disposed around and between them, thus separating tbem from each other ${ }_{1}$ and at the same time encasing them in a common envelope. To expose the subclavian vessels $B G_{1}$ it will bo
recessary to divide the faseia, between the stemal end of the clavicle aud the middle of that bone L. This being accomplished, and the subjucent cellular substance removed, both pairs of vessels uaty now be considerel at one and the sume view, in their entire extent and their genseral and special relations noted with more practical advantage than could be derived from examining each separately. The diagonal line which the sterno-mastoid described in the neek k_{1} is now represented lyy the carotid vessels themselves, reaching hetween the sterno-clavicular junction and the temporo-maxillary fossu. In having this course, the carotid vessels traverse that line which reprecented the posterior side of the anterior triangle, and the anterior side of the posterior triangle; and occupying thus the junctiou line of both spaces, their true position, in regard to the anterior one ean be correctly cstimated. On replacing the stennolaryngeal muscles, they will be seen to cover the first purt of the common enrotid, and if the sterno-mastoid be also replaced, it will be noticed to coneeal the whole length of the internal jugular vein, F, and the two lower thirds of the carotid, E c. From tbese remarks it will appear, thit to describe the carotid artery as coinciding witb the posterior boundary of the anterior triangle, is more likely to lead to the exact position of tbat vessel when it hecomes the subject of operation, than to say that it is contained in that space. In regard to the anterior mesind line ton, it will be further observed, that the carotid vessels s_{1} by receding from it in the same degree as they ascend the ueck, cuuse a much greater interval to oscur between them and the front of the laryns tbnn exists between them and the top of the stermum ${ }_{i}$ owing to whicb fact it is that these vessels so often escape injury in the suicidal act. In the fernale, whose larynx is naturally smaller than that of the male, the difference as to the intervals now mentioned is not so great; while in the infunt the larynx is of sucb small size, that it scarcely projects beyond the plane of those vessels. Such heing the general relations of the carotid vessels, those of the subelavian may he noticed with tbem.
The suhchavian vessels first appearing, like the carotid opposite the sterno-clavicular junction, will be seen to take a course outwards in relntion to the clavicle, which represents the base of the posterior triangle. If the sterno-mastoid he now replaced, it will slow, that the angle forned ly that muscle and the clavicle nearly corresponds in degree and position with the angle formed by the subclavian and carotid arteries, and still more nearly with that formed by the subclavian and intermal jugular veins. The clavicle, L_{1} being placed horizoutal, the relative position of the subclavian vessels in respect to it may he best estimnted; for now the artery, B_{1} in passing from the sternal end to the middle of the claviele is seen to arch to a higher level and also to bend to a deeper plane than the inner surface of the bone represents, while the vein $G_{1} G_{1}$ situated immediately bebind the hone e_{1} occupies the same level as it. Tlis difference between the relative position of the snbeluvian artery and vein ${ }_{1}$ is owing to the position of the first rib ${ }_{1}$ and also to the fact, that the anterior scalenus muscle, H_{1} separates the two vessels. The vertebral end of the first rilh being higher in the neck than the clavicle, while its sternal end is lower tban the clavicle, so the artery passing over the iniddle of the rib appears higher than the vein which rests on its sternal end. The scalenus being inserted into tbe middle of the rib while the inner and outer parts of the artery, B B ${ }_{1}^{*}$ are on a plane anterior to the front surficee of that musele, so the artery in passing behind the muscle describes an nutero-posterior bend from the vein which lies in front of the muscle. It is owing to the subelavian artery being elesated by the rib, that that vessel outside the scalenus traverses the posterior triangular space, and may be suid to be contained therein; but though the artery deviates from the direction of the elavicle, which represents the base of the space, it will be found in practice always safer to make search for the vessel in reference to that bone, than to any of the other super-

Figures of plate vi

Figure I.

A. Inuomiuate artery. - B. Subelavian astery, ites fiust purt, Be its thid part. C. Common carotid artery. - D. Extennal carotid artery. - E. Internal canotid artery. F. Internal jugular vein. - G. Subelavian vein. - H. Anteriar scalerus musde. f. Postorior realenus muscle. - J. Splenius muscle. - K. Tryprains muscle. - L. Clnficle - M. Omo hyoid nuuscle. - N. Pharyix - O. Sterio-mastoid umade eut. P. Stermum. - Q. Thyroid entilage - R. Os hyoides, - S. Hyo-glassus muscle. T. Genio-hyoid muscle - D. Masseter muscle. - V. Lower inaxilla, - W. Suprerticial corvical filesuas cut. - X. Mrachial plexus - 1. Suprav.senular artery. - 2. Tronsversalia colli artery. - 3. Inferior thymill artery. - + . Porterior scappular artery. 5. Spind accessory nerve. - fi. Fagus nerve. - 7. Phreuic nerve - 8. Hypo-glosal notve. - 9. Temporo-maxillary artery. - 10. Parrotid duct. - 11. Facial artory. -
13. Linginal artery. - 13. Superiar thymoid artary. - 14. Niteminethyma-hy oill mueve. -

Figure 11.

All the prirts exxept the fillowing are nuntred os in Figure 1.

 19. Huccinntor musedo, - 20. Condyle of lower jurt, cul. - 21. Temporal musale cut. 22. Muthr bona - 23. Upper maxilla - 24. Sult iugual glunul. - 25. Millute constrictor of plarynx. - 26. Crieoit cartilhge - 27. Crion-thyroid mavele - 98 Esouphangux -

commentary on plates I. VI. \& VII

ficial parts. By replacing the lower half of the sterno-mastoid, the clavicular part of that musele will he seen to overlie the suhclavian yessels between the iuner end of the claviele and the outer horder of the scalenus, which latter muscle separates, by its lower end, the artery from the vein, and hy its middle separates the artery from the sterno-mastoid. Between the senlenus and the inner end of the clavicle the sterno-mastoid is the only muscle which covers the suhclavian vessels, and great jugular vein, \mathbf{r}.
The general relations of the cervical vessels having heen thus considered, their sperial relations next require notice. Close behind, and for the most part on a level with the sterno clavicular junction, the innominate artery biforcates into the subcluvian and carotid hranches, the latter vessel, $\Delta \mathrm{c}$, being the nearer of the two to the median line. From this point the carotid aseends the neck, supported in the groove formed herween the phargax, s , Figure 2, and the rectus capitis muscle, x , in front of the vertehral column, to the carorid foramen of the temporal hone. Here the internal jugular vein, \mathbf{F}, making its exit from the crauium through the jugular foramen, close hehiud the earotid, comes into apposition with the outer side of the artery, and in this relative position the vein descends the neck, supported hy the same parts ns the artery, to a point a little to the outer side of the sterno-clavicular junction, where it joins the suhclavion vein, G, in front of the suhclavian artery, and external to the innominate. In this course hoth vessels are enclosed in a common sheath, and hetween the two, in the sheath, the vagus nerve, 6 , descends from the base of the skull to the root of the neck, where, with the jugnlar vein, it passes in front of the suhelavian artery. Between the two vessels, as far down as the angle of the lower jaw, the ainth nerve, 8, Figure 1, descends, and here turns forwards in front of the artery and its hranches to enter the tongue between the mylo hyoid and hyo-glossus muscles, s. From this nerve, where it crosses the artery, a hranch (deseendens noni) is given off, which will he seen lying either upon the sheath, or inside it, on the artery. Deep in the furrow belind the sheath, the sympathetic nerve, 5 , lïgure 2 , descends, giving off numerous hranclies, which with those derived from the vagus, the minth, and the glosso pharyngeal, form the pharyngeal plexus. In the upper two-thirds of their course, the vessels and vagus nerve arc bound in close apposition hy the shenth; but in the lower part of the neck, where this strueture is less defined, they are only loosely connected to ench other. Behind the inner thind of the right cluvicle the jugular' vcin will he found nearly an inel external to the anotid artery, while midway hetween them appears the vagus nerve. Behind the inner end of the lof clavicle the jugular vein lies eloser to the chrotid artery; and the vargus nerve descends, touehing the latter vessel.

The common carotid inust of course rary in length according to the level at which it arises from its parent trunk, and also according to that at which itself bifurcates. In general, the length of the righe common carotid ranges fron the sternal end of the clavicle to the upper margin of the thyroid eartilage, where it gives off the external carotid brancb. Between these points it is rave to find ary important branch arising from it, and henee the grenter prohahility of a favourable result to the operation of tying that vessel. Butween the origin of the external carotid and the hase of the skull no hreneh is derived from the main vessel; but in this situation it lies so decp and so inextricably surrounded with arteries, reins, and important nerves, that this portion of it (internal carotid) hecomes surgieally inuccessible. The trunk of the external enrotid, D, Fig. 1, Plate V I., is very seldom more than half an inch long: and in many instances it cannot be snid to exist, owing to the thyroid, lingual, facial, temporal, pharyngeal, and occipital hranches arising scparately or iu pairs from the common carotid, c , of which, in fact, the soculled exturnal eurotid, even when of its normal form, is hat as an off:shoot, while the interual carotid, E, is its proper continuation. This idea secins to me to be supported by these circumstances:-1st. That the internal enrotid is produced in the direction of the common carotid, the colibre of the former heing little less than that of the latter, 2nd. The internal jugular vein, F, hies sidelong with hoth parts of the common arterial trunk, from its origin to the carotid foramen. 3rd. The common carotid relatiug to the cervicul vertebre is continued by the internal earotid which follows the cephalic vertebree. Judring from these facts, the true anatuateal signification of the "external carotid" may be expressed thms-it consists of a group of branches derived from the parent vessel, and representing as it were the viscercel arteries of the face and neek, like the mesenterie arteries of the ahdominal aorta.

Amongst the hranches of the external enrotid, a principal one, the internal maxillary, 9, ligire 2, parts from the temporal at the neck of the maxilln, 20, hetween which and the pterygoid museles, f V , it prsses forwards to the spheno-palatine fissure, 23 , through which it enters the posterior nares, to be distrihuted to the lining membrane of
the nasal eavity. To expose it, the nscending ramus of the jow is required to be removed. In its course it gives off nmmerous hranches in the following order-an inferior dental, which enters the dental canal; the middle meningeal, which enters the cranium through the spinous formen of the sphenoid hone; two deep temporal, which ascend the temporal fossa noder the temporal muscle; hesides a buccal, superior dental, vidian, and infra-orhital hranch. In dissecting this vessel, we meet with hranches of the fifth nerve, two of the principal of which, the inferior dental and gustatory, 17, descend obliquely forwards between the pterygoid muscles and ramus of the jaw, the former entering the dental canal, and the latter more anteriorly passing to ramify on the tongue above the ninth nerve and the sublingual gland.
The suhclavian artery arches ontwards from hehind the sternal end of the clavicle to the middle of that bone, beneath which it passes into the axillary space. Under the middle of the clavicle the accompanying vein parts from the artery, and passing inwards behind the bone and in front of the scalenus is joined at the inner border of that muscle by the internal jugular vein. The highest part of the arch of the right artery is ahout an inch above the clavicle, but varies in height according as the neck is short or long, the shoulder high or pendent, and also according to the position of the imnominate bifurcation. Its highest part, which rests on the first rib hehind the anterior scalenus muscle, is also its deepest part. The arch is divided into three surgical portionsnamely, that which is internal to the scalenus, that which is behind this muscle, and that which is external to it. From each of its three parts, which are respeetively very short, large branches arise, and hence the chief reason of the unfavourable results of the operation of tying this vessel when aneurismal. It is moreover crossed at all points hy large and most important nerves, large veins, and even by its own branches, and hence arises the almost insurmountahle difficulty of safely exposing it in that operation. Its inner portion, B, is in contact with the summit of the pulmonary sac, and has the vagus nerve and branches of the sympathetic in front of it, and also the lower cnds of the anterior and great jugular veius. From this part of it, which is seldom more than an inch long, are given off the thyroid axis, 1, 2, 3, Figure 2, in front; the internal mammary, 30 , helow; the vertehral, 29 , above; and the superior intercostal and deep cervical hehind. From the thyroid axis three hranches arise, of whiel one, 3 , turns inwards behind the vagus nerve and lower end of the carotid artery to enter the substance of the thyroid hody, while the two others, (transpersalis colli, 2, and suprascapular, 1,) pass outwards betwcen the jugular vein and scalenus muscle, traversing the lower part of the posterior triangle in front of the outer division of the main artery and the brachial plexus. The middle portion of the arch, little more than half an inch long, is covered hy the scalenus, on which muscle the phrenic nerve descends outside the great jugular vein. Its outer portion, occupying the relative position ahove noticed, is the longest of the three, between collateral branches. Throughout its conrse the sulclavian artery is deeply placed, as may he judged from the united width of the thick sternal end of the clavicle, the distended subclavian vein, and the floshy scalenus musele. These parts give the depth of the middle of the arch, hut its outer and inner portions are somewhat more superficial.
The principal deviation from the ordinary relative position which the carotid vessels present is that in which the jugular vein lies upon the artery; and in this case the vagus nerve is also found to overlie it. The most remarkable deviations which have been observed of the subclavion vessels are these:-that in which the vein passes with the artery hchind the scalenus, that in which the artery perforates the scalenus, and that in which the artery passes in front of the muscle with the vein. These cases are very rare. As to the brachial plexus, the only unusual feature which it exhihits is that in which one or two of its lower cords cross the artery, in front or behind, near the middle of the clavicle.
In procecding to place a ligature around either of the cervical arteries it is required to give the neck a fixed position, in order that we may find the parts as we expect them to appear, as well in the order of superposition as occupying the same plane in each layer or stratum. The cervical vessels are liable to change of place and relations, owing to the mobility of the head, neck, and shoulder. When the neck is extended and the face turned aside, Figure 1, Plate VII., the carotid artery has generally the following relative position-the hifurcation of that vessel, K L, opposite the thyro-hyoid interval, GF, and for half an inch or more below this point projects from under cover of the sterno-mastoid muscle, are also this point the lower parts of the external and internal carotids are also revealed by that innscle. About midway hetween the os
hyoides, F , and the stermum, the anterior margin of the sternowastoid,

III

comatentary on plates r. Yi. \& vil.

anl the omo-ligoid, \mathbf{u}, overlap the earotick; and according as we have to seareh for it nearer the sterno-clavieular artienlation, it will he found more and more centrally overlaid by the sterno-mastoid, and also by the sterno-liyoid and thyroid, G I. The lower the situation at which we have to expose the vessel, the less do the various positions of the neck affeet its relative anatomy.
When the earotid, or any of its bramehes, happens to be wounded, the rule is to tie both ends of the vessel in the wound. The situation of an aneurism of it must determine the point at which the ligatme is to be applied to it. If an aneurism affeet the internal carotid within the cranium, or immediately helow the base of the skull, and the signs dearly indicate this position of the disease, the operation, whether with the object of tying the root of the internal earotid, or the upper part of the eommon earotid below its lifureation, is to be performed thus:-A1 incision of suffieient length (an ineh and a half), the mid-point of which would eorrespond to the level of the upper margin of the thyroid eartilage, should be made from hebind the angle of the jaw along the anterion border ol the sterno-mastoid musele, dividing the skin and platysma musele, the superficial fasein and cellular substanee. The fascin forming the sheath of the artery will now, on retracting the eut parts, be exposed and the deseendens noni nerve, if lying on the sheath, may be discerned. The sheath is then to he opened along the anterior horder of the ressel and, taking eare not to disturb the artery more than maly be sufficient to expose the part where it is to be tied, the ligature should be earried close around it, from behind forwards, with a view to exclude the vagus and other nerves. In the sume incision the root of the extermal earotid, \mathbf{t}, and that of either of its lower branches, $1,2,3,4$, ean be exposed. Reeollecting that the external projeets a little forwards from the internal carotid and the margin of the sterno-mastoid, the former vessel will be found elose to the greater eornu of the os-hyoides, above whieh bone the lingual, 2 , and faeial, 3 , arteries spriug, and below which is the origin of the superior thyroid, 1. Crossing the internal and the external enrotid where the latter vessel gives off the lingual and faeial, we meet with the ninth nerve, 6. The parts by which the arteries are liable to he compliented in this situation are these-riz., the intemal jugular vein, N_{1} nsually on the outer side of the earotid trunk, may he lound eompletely covering it; or a number of veins, the facial vein, $\mathrm{c}_{\text {, and }}$ and its tributaries, may form a plexns on it; or lymphatie hodies, in greater number than usnal, may conceal its position. The hifureation of the common carotid too may be a little higber or lower than usual, and the digastric, D_{1} and stylo-hyoid museles, instead of hoth heing outside the external earotid, may be inside, or else have that vessel hetwreen them.

If an aneurism arise from the earotid artery, K , opposite the thyroid cartilage, the vessel requires to he tied midway between this situation and the hifureation of the immominate, the steps of whith operation are as follow: - An incision minch and half in length, its middle corresponding with the site for the ligature, is to be made along the anterior border of the sterno-mastoid. The skin, platysua, P , cellular membrane, and fascia, Q , having been sueeessively divided, and the sterno-mastoid, o, exposed, that nusele, here coneealing the artery, will require to he cut aeross its fore-purt, or else relaxed hy inelining the liead to the sternum, in whiel position the musele may he retracted from the vessel This heing done, the omo-hyoid musele, n_{1} will now appear crossing mider the sterno-mastoid over the vessel, or it may be over the anemism. The sterno-hargngenl muscles, $\in \mathbf{L}$, whieh, below the omo-hyoid, overla] ${ }^{2}$ the artery, will next require to he cither divided or drawn fonwards The pulsation of the artery in its slecath, r , will now indicate its exact position. The sheath is to be slit lor half an ineh on its anterior side, so as to avoid the jugular vein and vagus nerve; and, with the same objeet in view, the ligature is to he passed close around the vessel, from hechind forwards. In exposing the artery at this plaee, the auterior: jugular vein passing under the sterno-mastoid may be found erossing
the lime of incision; the vagns nerve here descends chase to the onter side of the artery; but the jugulur vein is n little mure removed fron it in this direction than it is furcher up in the neek. For exprosing the lower end of the common carotid, it becomes nervesary to divide the sterno. mastoid, hyoid, and thyroid muscles, as in the operation on the innominate or first part of the suhelavian artery.

As the elavicle follows the motions of the shoulder, it thereby influences materinlly the form and diraensions of the posterior triangle, and consequently the relative position of the subclavian artery. The shoulders of some individuals being naturally more pendent than those of otlicrs, the artery, e, Figure 2, is to a grenter extent revealel above the clavielc, w, in the fomer than in the latter. An axillary uneurism, too, may be of so large a size as to keep the shoulder permanently elevated. But whatever be the relative position of the parts in their healthy or disensed state, it will be found that, aceording to the degree in which the shoulter ean be depressed baekwards, the greater will be the extent of the artery above the elavicle, aud the more superficinl also that wessel will become. The struetures whichoverlie the vessel in the posterion triangle are the same in number and kind as those whieh cuver the carotid in the anterior triangle; and the former vessel, like the latter, beenmes nore deeply situated the nemer it is to the sterno-clavicular articulution.

The outer portion of the subclavian atery regnires to be tied when the vessel in the axilla is aneurismal. The operation may be performed in the following way:- The patient, lying supine, is to have the shoulder depressed as much as possible, and the head inclinet to the opposite side. The position of the artery having been moted, $z \circ \mathrm{w}$, ligure 1 , the skin is to he drawn down tensely over the elavicle, and incised nipon this pant for three inches, the middle of the incision being made to correspond with the middle of the bone, w, under which the artery pmsses. The skin being now allowed to retrict upwards over the course of the artery, the incision will be found to eross that wessel; sul in order to gain space in the operation, it may be deemed neecessary to make another division of the skin along the border of the eleido-mastoid muscle, o. The platysimn, \mathbf{p}, cellular membrane, and fascin, x, ure next to be divided to the same extent, avoiding the lower end of the extermal jugular vein, s, at the angle between the cleido-mastoid and elavicle, and the subchavian vein which it enters at this point. At this stage of the proceeding the parts which may appenr offering impediments are these-some lymphatic bodies lying either upon the depp fascia, or heneath this in close relation to the artery-the subelavinu vein rising higher than usual-veins coming from under the trapezius to join the end of the external jugulanthe supra-scapular and tranversalis colli passing outwurds, immedintely ahove the clavicle-or the omo-hyoid, n , lying lower than usinal. Avoiding the vessels as much as possible, or tying such of them as may happen to be cut, the omo-hyoid shontd now be pushed upwards, and the eleido. mastoid musele purtly divided, if broader than usual, and eoneealing the scalenus muscle, \mathbf{c}. On putting the forc-finger now into the wonnd in searell of the sealenus under the eleido-mastoid, the former muscle may be felt at its insertion into the first rib, and the artery perceived palsating immediately belind it. On the outer side of the artcry the tense cords of the brachial plexus, F_{1} will be fonnd with the posterior scapular hranch of the artery passing buekwards among then. The urigin of this branch being geterally elose to the scalemus, the lignture, which cannot be applied above it, shonld be placel at a print as fur below it as possible-that is, close to the claricle, in which situation, as the sub. clavian vein generally: lies at a litele distance from the inner side of the artery, the former vessel may with ordinary care be avoided. Owing to the depth of the artery, it is foumd dificult to earry the limature aroumd it; but with the object of not iujuring the vein, or inclucling any branch of the brachial plexus, the point of the instrumpit stonld be dirceted under the artery frow below, upwards and outwards.
The middle part of the arch of the subclerinu artery is inaccessible

FIGURES OF PLATE VH.

Figure I.
A. Musuter muscle ingarted into angle of lower maxilla - B. Parotid giand. C. Facial vein. - D. Digastric muscle - E. Sub-maxillhry glandi - E. Hyoid bonc. -
 K. Comaron earotid artery. - L. External cavotid. - M. Interaal carotid. - N. Interyal ingular vein. - $00^{\circ \circ}$. Sterno-mastoid mussle. - P. Phatysama mascle - Q. Deef curvical finecin. - P. Shenth of the vessels - S. Extermal jugular veill. - T. Thyrom
 W. Clavicle. - X. Hollow of p
ivetion of necernal end of clavielo.

COMMENTARY ON Plates V. V1. \& VIJ.

unless by dividing the clavicular attachment of the steruo-mnstoid and the scalenus muscle -a proceeding whicb endangers the artery itself witb the braehial plexus behind the scalenus, the important phrenie nerve, and the branches of the thyroid axis which pass close together in front of that muscle, and also the internal jugular vein in contact with its inucr border. This part. of the artery being the deepest of $t b=$ three, and searealy an inch long, between the origins of collateral bronches, are additioual circurustances rendering it incligithle as the site for a ligature. It has heen tied in cases where the outer portion of the artery, on being exposed, was found disensed.
The inner portion of the arch of the subclavian has been tied in cases of nucurism affecting its outer portion; but in consequence of the slort interval of the vessel, between its origin and the sealenus muscle, besides its great deptl, the large ond numerous branches whicb arise from it, its contiguity to the pleura, the inportant nerves and veins which are in front of it, and its closeness to the heart, this operation is rendered the most difficult, and is proved to be the most unsuceessful of all similar operations in surgery. As yet, it is the operation, not the disease for which it is undertaken, that has been the immediate cause of deatb. The operation is only pelformed as the least of three extreuse mea-sures-either to expose and tie the subclavian artery in tbis sitmtion, attended with almost insurmountable difficulty, and small hopes of a favourable result; or che to expose and tie the innominate trunk $\rightarrow \Omega$ proceeding equally, if not more difficult, and giving weaker hopes of i favoumble issue, owing to the arrest of circulation through the carotid as well as the subchavian, besides the site of the ligature being still nenver the heart; or clse to lenve the ease to Nature, and bide the issue of her struggle with Fate. The same parts, and in a similar manner, are required to be divided for reaching the innominate, and the contiguous parts of the two vessels into whicb it bifureates. The incision whicb proves to be the most couvenient for this operation, is one luade parallel witb and a little above the inner third of the clavicle, and turning upwards for abont two inches along the anterior border of the sterno-mastoid. This muscle is then to be separated from its sterno-claricular attacbments, and turned aside, so as to expose the subjacent parts of the sternolaryngeal muscles: these have next to be divided transversely; and on turning them aside, the deep fascia will next appear with the lower end of the auterior jugular veiu. The fascia is now to be coutionsly divided on a director, and the loose cellular substance heneath it parted witb the finger or landle of the scalpel. This being done, the bifurcation of the innominate is to be sought for, and, wben found, the direction of the carotid and subclaviau may then he readily traced. If tbe subclavian artery is the one to be tied, the vagus nerve and internal jugular vein will have to be parted from each other to make way for the lignture, the more eligible situation for which will perhaps be at a point as near the seulenus as possible. The ligature bere will have to its inner side all the principal brancles--the thyroil axis, internal mammary, and vertebral; but it being at the greatest possible distance from the carotid, it will not be so minch exposed to disturbance from the strong current of that ressel as it would be if placed more intermally. In the latter situation, moreover, the ligature would be botween two disturbing causes, that of the direct circulation through the carotid on its iuner side, and that of the retrograde currents through the brancbes on its outer side. In passing the ligature around the arters, much care is required to avoid including the recurrent brmel of the vagus nerve-an event wbich is more likely to linppen while the vessel is being tied nearer the carotid than the scalenus muscle; and this remark also applies to the sympathetic nerve. In directing the point of the instrument around the artery from below upwards, it should be kept close to that vessel, so as not to puncture the momimate vein, or lacerute the plenra.

The right subclavian artery frequently varies as to its place of origin. In some instunces it has been seen springing from the back part of the nortie arel, and passing bechind the cesophagus, or between that tube and the trachea ; in others, holding its usual position in the neck, but arising separately from the fore-part of the nortic arcb, the dight carotid also arising from the aorta, and the innominate being of course absent in hoth these instances. In others, the right subclavian was found to spring from the innominnte, at the usual level,
but behind the root of the but behind the root of the carotid, and consequently on a deeper plane than ordinarily. The left carotid is frequeutly seen to spring
from the imnominate. The subcer from the imnominate. The subclavian arteries are oceasionally found complicated, i'y short superimunerary ribs jutting from the seventh, sixth, or fifth cervical vertebrre, and giving to this region of the skeleton an appearance similar in all respects to that where the nsterual ribs
degenerate into the transverse proces of degenerate into the transverse processes of the lumbar vertebre. The
carotid arteries, too, I have observed, in aged sukjects, to he occasionally eomplieated by a sbaft of bone representing the ossified stylohyoid liganent. One or both of these varieties in the human skeleton are normal and constant in different species of the lower animals, even in those of the class Mammalia, and tbus express their meaning. Thus, indeed, by a comparison extending tbrough the animal series, do all others of the so-called anomatics of form, whether as regards the vaseular, the muscular, or the osseous system of the buman body, bccome analysed, and mauifest tbeir proper signification.

Bloodleting is a eurative measure, mueh oftener adopted at empirical hazard than on rational prineiple. Tbe truth of this obscrvation will be the more readily acknotvledged, in regard to diseased conditions of the nervous centre. The objects of the operation are twofold-a general and a local depletion of the bloodvessels. For effecting the general depletion a vein or an artery is opened, and the blood let out in a full stream; and for effecting the locnl depletion the capillary vessels are divided in the vicinity of the part diseased, or in tbe part itself, and the blood is here made to issue througb the numerous little orifices. While reflecting upon the rationale of this subject in its several bcarings, the following idens occur to me: -1 st. As the vascular systen forms a circle of which the beart, the prime-nover of the blood, is a point, it follows that from whichever other point of the circle we abstract blood, we induce general and local depletion at the same time. The effect, then, of local depletion cannot result but as the effect of general depletion also, and vice versa.-2nd. Whetber it be an artery or a vein that we open, general depletion will equally result. But the arterial and venous blood are of different quality. This being tbe only difference, it follows, tbat unless we believe the blood in the afferent artery bas a more immediate relation to the diseased state than the blood in the cfferent vein, there exists no raison wby we sbould prefer arteriotamy to venesection. Even if we had reason to bebeve this, the cboice of the former opcration must he a mere myth in practice, while we find the arterial becoming transformed into venous blood, and the one to be as closely followed by the other as substance by sbadow-the removal of the one fluid implying hence the removal of the other, botb qualitatively and quantitatively.3rd. The effect, then, in respect to systemic depletion being equal, whether the hlood be drawn from an artery or a vcin, our reasons for preferving to make the vein the subject of the operation are these:-It is always more accessible, more manageable, and less frequently attended by untoward consequences. - 4th. As in every part, however small, we find a vascular circle special to it thougb a portion of the great circle, so every part may be regarded as possessing a life of its own, though dependent on the life of the whole. This remark is true also of the diseased state, for each part may be specially affected while involving the whole, and hence admits of special and general curative treatment. Henee for local inflammations, loral bloodletting may be sufficient; and as in such cases we take no account of differences between capillary arteries and veins, which we open indiscriminately witb the desired effect, so may we infer, that for gerieral inflammations arteriotomy has no virtue to recommend it which venesection does not possess.-5th. As every part has a special main artery leading to it, and a corresponding vein leading from it, so when we require to abstract blood from a part, particularly, which happens to be out of reach, either of these vessels are to be made the sulject of operation. In some instances the size and the siturtion of tbese ressels forbid this measure, and then we have recourse to general bloodletting, performing tbat operation at the most convenient situation. The carotid artexy and internal jugular vein are the principal vessels serving the brain; but owing to their size and position, they forbid tbe operation on them. Now, in sucb cases as delirious phrenitis, and comatose congestion of the brain, though it is usual to open the temporal artery or the external jugular vcin, on the supposition that as thicse are cephatic vessels they must directly refer to the brain, it should be remembered tbat this is no more true tban it is of the bracbial vessels, and therefore the later being more accessible, should be preferred for the operation.-Gth. Wben blood is onee effused in the substance of any organ, it can neither be removed, nor its increase prevented, by eitber venesection or arteriotomy. Those operations can no more influenee blood effused in the brain, than they can a fracture of the skull, with depression. - 7th. When the functions of tbe brain are annihilated by concussion, the functions of the beart, and consequently of the whole vascular system, are electrically struek, and in a great ineasure abolished, at the same time. Therefore in such a case it must at once appear, that to draw blood in the hope of arousing either beart or brain would be no less vain than to discover in the demonstration ad absurdum, the contrary - than to raise $a-b$ to $a+b$, by still subltracting the quantity b.

the surgical dissection of the superficial and deep axillary anib bracmal biefions deligation of the axillary and brachal arteries, \&o

Tire boundaries of each surgieal region are but artificial, and cannot be otherwise, forasmuch as we see one region blending with another, and the same kind of structure trayersing two or more of them. These houndaries being in most instances deseribed by moveable parts, will bence be found to influcnce not only tbe form and dimensions of the region itself, but in some respeets the relative position of the several structures wbich it contains. The elavicle is an example of this kind of conventional boundary. This bone scrves to mark the ideal line of separation between the lateral cervical region and the axilla; but as it is a part which freely obeys the action of the neighbouring muscles, it will, according to it motions, be obscrped to vary the areas of both these regions, contracting tbat of the one in the same ratio as it inereases that of the otber. In tbc same degree as the elavicle happens to vary the dimensions of the cervical and axilliny spaces, will it also vary the length of tbose parts of the main vessels and nerves which are deseribed as being lucated in either space, above and below its own level. Hence the necessity for fixing this bone in the horizontal position when we would describe regions and structures whose forms, dimensions, and relative situations are, for practieal purposes, allowed to be ehiefly determined in reference to it. Those portions of the subclavinn ressels and nerves wbich are above the level of the clavicle then oecupy the eervieal region, while those portions whicb interrene between this bone and the folds of the axilla, traverse the axillary region, and below the latter they beeome brachial.

The arn being abdueted, and the skin, adipose substanee, platysma, and superficial faseia baving been dissected off the peetoral region and fore-part of the shoulder, we see exposed the great pectoral muscle, W_{1} Figure $\mathbf{1}_{1}$ extending between its origin and insertion. At its origin, from the imner half of the elavicle,$_{1}$-the sternmm, and adjacent ends of the ribs, the muscle is thim, owing to its fibres being sprend over so large a surfaee; but where it forms the anterior fold of the axilha, w R, it prescits of eonsiderable thiekness, the fibres here having become congregated, and the whole musele so twisted upon itself, that its inferior border is tumed up and folded beneath its middle part, w_{1} Figure 2, and thereby its tendon, inserted into the anterior margin of the bieipital groove of the humerus, is concealed. A very similar arrangement of its purts is exlibited by the latissimus dorsi unsele, p_{1} in forming the postcrior horder of the axilla. Betrieen the sternal and elavienlar parts of the pectoral muscle, a cellular interval will be observed, throngh which some of the branebes of the internal mammary artery pass fontards; and between the elavieular portion of the musele, $W{ }_{D}$, and the deltoid, V_{1} anotber suel interval appears, which is a feature of some surgical iutercst. In this situation, the cephalic vein, $m^{* *}$, enters the axdlary space to join the axillary vein, m_{1} Figure 2, and bere also some offsets of the acromial branch of the axillary artery, \mathbf{I}, pass outwards, to rumify beneatb the integuments. On pressing this interval witb the finger, the coracoid process, s, Figure 2, may be felt as a bard body not far beneath the surfaee, and about an iuch below the clavicle; it is dceply along the inner side of this proeess that the axilhary artery, I_{1} with its accompanying vein, s_{1} and nerves, K_{1} traverse the axilla to gain the inncr side of the arm. The pectoral musele consists of large bundles of fibres, whieh lie parallel, near their origin, and deeussate towards their insertion; and from between them numerous small arteries are to be seen emerging to the integuments. These vossels are the terninal brames of the thoracie arteries given off from the axillary; and apon them, and the superfieial hranehes of the internal mamary artery, the female mammary gland is solely dependent for its supply. During

Factation, they become of larger size, and inore nunerous than at other periods. On the external border of the pectoral muscle appears the deltoid, v_{1} forming a muscular cap for the shoulder joint, and arising from the onter third of the claviele, tbe acromion process, aud spine of the scapula, to be inserted near the middle of the humerus on the outer side of that bone. Viewing the pectoral and deltoid in front, they prescnt the appearance of being one muscle, ns well froin the similar claracter of their fibres as irom their serial and parallel armngement hetween origin and insertion, being only separated above by the cellular interval before noticed, while below the two apprear inseparable. In tracing the cephalic vein from above, it will be scea to wind along the anterior inferior border of the deltoid and over the biecps, to gaiu the outer side of the arm, and to be in its wbole course sulicutaueous.

By removing the cential third of the claviele, D, Figure 2, and that of the grent pectoral, w, together with the subjacent membranc, we expose the subelnvius, F, and the lesser pectoral muscle, N. The subclavius will be seen to nrise from the sturnal end of the first rib, and, lying parallel with tbe clavicke, to be inserted into the under surfice of this hone as far outwards as the coracoid process of tbe senpula. The lesser pectoral, below the subclavins, arises from the three or four upper ribs anteriorly, and tapers upwards and outwards to its insertion into the coracoid process. The fibres of this muscle decussate with those of the great pectoral, and form but a partial covering to the axillary space. Around its upper and lower horders some of the thoracie arteries turn formards to enter the substance of the great pectoral, and ultimately ramify in the pectoral integument. Both pectorals, when riewad in section, will be found seprately cnclosed in distinct shenths of fibrous membrane. On dividiug the lesser peetoral and turning aside its parts, the deep layer of the axillary fascia comes into view, stretching from the side of the thorax to the corncoid process, and from the first rib to the humeral outlet of the asilla, wberc it becomes continnous with the fasci: of the arm. Of this menbrane is formed an irregular sort of shenth for the axillary vessels, as may be secn by dividing it along their course. Tbis having been done, and the parts separatcd, the axdlary space is now fainls opened, and exlibits a complicated mass of hloodvessels, nerves, and lgmphatic glands embedded in a lugge quantity of loose and very catensile cellular sulstance, mixed witb adipose tissue and infiltrated witb serum. The more important parts having been cleared of the surrouding tissnes, the main bloodressels and nerves will be exposed, trawersing the neck and axilla, whilst the relations of the clavicle and the manner in wlucb it divides hoth regions may now be clearly understood. Inmediately belind the inner third of the elavicle now appears the subelavinn veiu, s_{1} Fignre 2, crossed by a small nerve derived from the bracbial plesus, and given to the subchvius muscle. Behind the vein is the anterior scalenus musele, B_{1} inserted into the middle of the first. rib, crossed by bramehes of the thyroid axis, and having the phrenic nerve descending on its inner border. Behiud the scalemus is situated the sulclavinn artery, I, arching over the first rib, x_{1} and rising to a higher level iu the neek than the vein. Above the artery may be observed the lurachial plexus, K, issuing from between the two scaleni museles, $\mathbf{B} \mathbf{B}$, attacbed to the transverse processes of the cervical vertebre. In this same orter, the nerves, artery, and vein arrive under the middle of the elaricle, the vein gradnally approaching the inner side of the artery, while the nerves are alrendy closely applied to its outer side, and bere sinking benenth the clavicle and subelavius muscle, they enter and traverse the axillary region under cover of the parts already mentioned.

Figera 11.

Figure I.
A. Trapezins musele. - B. Serntus magmus nusele. - D. Claviela - I. Brawhini arcry. - K. Afediun nerve. - Mm. Basilic vein ; $m^{\circ \circ}$. Cephatic reint- P. Templan of latisimus dorzi. - Q. Teres magior muscle.- R. Axillury Iymuphatic bollies - U. Co meo-brachinliz. - V. Dettein nuuste - W. Yectornis migor ıunsele - X. Triceps innacle. - 2. Biceprs mussuc.

All parts, except the following, are mankeyl as in Figur. 1

 artexy. - II. Conimon camtid - I. Subclavzin mul limachial arlery - K. Bimehisal

The axilla is a space of very limited area, while the arm is adducted to the side. In this position of the arm, it exists only ns a small interval bounded by the two first ribs, the clavicle, and the head of the humerus. But when the am is filly abducted, the osseous and muscular parts being entire, it exlibits much wider proportions and a more definite shape. In the latter position of the arm, the axilla appears conical in form, having its apex at the root of the neek, between the clavicle and subelavins in front, the first rib internally, and the upper margin of the scapula externally. It base is helow, looking towards the inmer side of the arin, and is lorned hy the lower border of the pectoralis major in front, by the iatissinius dorsi and teres muscles behind; while the arterior side of it is described ly the two pectoral, the inner side by the thorax overhid by the serratus magnus, and the onter and posterior sides by the seaputa and humerus, together with the muscles eonnected to these brones. The apex of the axilla is closed by the deep cerrieal fascia, of which the subelavian vessels, on entering this space, carry with them a cluplicature, in the form of a sheath. The base is elosed by the dense fiscia stretching between the axillary folds and from the side of the thoras to the arm. Here the axillary ressels and nerves pass out in close apposition with the inner side of the arm, to which they are bound by a process of the membina last mentioned.

While ctaning the axilla of the cellular substance, muel care is regined to preserve tbe numerons lranches of nerves, arteries, and veins, which here eross each other in all direetions. The arterial brancbes will all be foond derived from the axillary artery; and the reins neeompanying thein may be traced to the axillary vein. The bracbial plesus of nerres, too, while passing throngh the space, gives off numerous branebes to the adjaeent auscles; while nerves from other sonrees-tbe intercosto-humeral branches of the intercostal nerves, and the long "extermil respiratory nerve" of the cervical plexus-will also be found traversing this sitnation. The cephalic vein, $m^{* *}$, entering the axilln, through the pectorodeltoid interval, joins the axillary vein, m, below the elavicle; while the basilie vein, $n^{* \infty}$, passing upwards from the inner side of the nrm, enters the base of the axilla, and after receiving the vena-eomites of the lrachinl artery, nud others of large size, from the side of the thoras, becomes, in fact, the axillary rein itself.
lin traversing the asilla, the principul pessels nud norves will he notieed to lic eloser to the arm than to the thomx. Very soon after they have passed lrom under the subelavius muscle, they get into apposition with the enmeoid process of the senpula, where they are overtaid by the upper part of the lesser pectoral muscle attached to that proesss, and thence tbey course along the inuer border of the eoracobrahialis muscle, v, to the middle of the inner side of the arm, where they forst come in contact with the hiceps, z. In this course the artery lies nearer to the amn than the vein, the latter vessel being somewhat apart from the imer side of the artery, especially at the level of the claviele, and the two not couning into npposition till near the axillary folds. Both vessels will be found much deeper from the peetoral surfnee immediately below the rlaricle, than they are when about to pass from under cover of the pectomal inuscle to the arm. In the former situation, too, they are (cspecially the sutery) mach more closely surrounded by their own offsets and by the hrachial plexns of nerves. The axillary rein lies parallel with nad to the inuer side of the artery, while the braelial nerves are in actual eonact with the latter vessel, forming a plexus around it. The braelisa plexus, n, llate 1N., Figure 1, does not nppear to liave the same form and arrangement in any two individuals, hut in general it will he seen to elubrace the main artery so closely as must render it a very difficult and hazardous task to apply a ligature to that vessel in the living hody. On the outer side of the artery will genemlly be seen a large nerve, which soon divides into two brameles-mmely, the museulo-eutancous, which pierces the corneo hrachialis mascle, v, to gain the outer side of the arm; and the ofler, which contrihates, with a bunch on the inmer side of the artery, to form the wedian nerve, k 1 , lying in front of that ressel in this situation. The ulnar, 2, the musculospiral, 3, the cireumflex humeri, 4 , and the sulsenpular nerve, be to the inner side of the artery, and overlaid by the vein. Small thotacic nerves, derived at uncertain points from the plexus, supply the pectoral muscles; two or three inter. costo-lnmerni nerves cross the axilla in the direction of the arm, to simply the integument of this pari, while other small nerves (the intenal eutaneous and Wrisherg's nerve), given off from cither the unar or the musculo-spisal, follow in the conse of the hasilic vein, over the fascia, und terminate in the skin of the forearm.
The hrancbes derival from the maiu artery in the axilla are destined for the ncighbouring parts, and vary as to their nuaber, size, and points of origin. The principal of then are the thoracie, 7-8, ramifying among the peectoral mascles; the acromial, 7 , turning in the conrse of the cephatie
vein, $m^{* *}$, uver the coracoid attachment of the lesser peetoral muscle; the anterior and posterior circumflex humeri, taking the eourse indicated hy their names, and passing close around the neck of the hone; and the subscapular, 9 , which generally arises from the main artery, between the tendon of the latissimus dorsi and the adjaeent border of the subscapular muscle, near the humerus; and having given off in this place one or two large branches to the dorsum of the seapula, descends along the border of the latissimus dorsi muscle, ramifying on it and the side of the thorax. This branch is the most eonstant, perhaps, of them all in respeet to size and place of origin. I have, however, observed it arising from all parts of the parent vessel. The first important branch of the axillary artery is the thomacieo-acromialis, 7 , and the point at which it generally arises-viz, an mell or thereahout helow the elaviele-may he noted witb practical udvantnge in reference to the appliention of a ligature to the outer part of the suhelavian. The plaee of origin of the posterior seapular brameb, 6 , of the suhclavian being usually at the outer border of the scalenus musele, it will be observed that, between this point and the origin of the first axillary braneh, the main vessel presents a longer interval than, at fist sight, the clavicle erossing the middle of this part would allow us to notice.
The axillary vessels and nerves in passing from this place to the arm assume the name brachial. In their eourse along the inner side of the anu, Plate VIII., they appear comparatively superficial, heing covered ouly by the integuments, adipose substance, and faseia. Nen the axillary folds, W, P, the artery, 1 , will he found passing along under cover of the coraeobrachialis suuscle, U, z, which sepnrates it from the biceps. Not till the artery has nrrived at the middle of the arm does it come into apposition with the bieeps-a eireumstance neeessary to be remembered when operating to expose tbe vessel in this sitintion. The faseia of the arm forms sheaths for all the muscles, and a distinet one, r, Figure 2, for enelosing the brachial artery, the median nerve, and the vena eomites, whieh are hy it honnd in company along the osseous axis of the limb. The hasilie vein, $\mathrm{M}^{* *}$, aeeom. panied by the internal eutaneous nerve, courses superficial to the faseia, in the same line, however, with the braehial artery, the faseia alone separating hoth vessels. Between the lower border of the axilla and the middle of the arm, Plate $I X$., tbe artery appears in close relationship with the ulnar, k 2 , and musculo-spiral nerves, K 3 , as well as the melian nerve, K 1 . In this situation, the median nerve will be found lying to the outer side, or in front of the artery, the ulnar nerve heing on its inner side, and the museulo. spiral behind it-the sheath alose separating the two last-named nerves from the vessel. From the middle of the arm downwards, the artery and nerves take different directions. Separating from the artery, the ulnar nerve, supported by the short inner head of the trieeps musele, and under eover of the fascia, is direeted to the iuner condyle of the humerus, w , hehind which it passes to the forearm; the museulospiral nerve winds behind the middle of the shaft of the humerus, hetween this and the trieeps, x, to gain the outer side of the arm, while the median nerve crosses obliquely in front of the artery, to gain its inner side, and in this relative position both traverse the hend of the elhow, to enter the forearm, under cover of the superficial lajer of museles.

The brauches of the brachial artery in the arm are numerous, hut for the most part small in size. Little offsets are derived from it in its whole eourse to supply the adjacent parts. The two most considerable of its brancles are the superior, $\mathbf{1 0}$, and the inferior profundus, 11. Of these, the superior is generally the larger; it is derived from the parent vessel, near the axilla, and having given off some of its subdivisions to the struetures at the upper and inner side of the arm, follows in the conrse of the musculo. spiral nerve, and ends by anastomosing with the radial reeurrent branel on the onter side of the elbow joint. The inferior profundus arises from the hrachial, at the middle of the arm, gives branches to the inner side of the triceps, and passes, in compauy with the ulnar nerve, to the inner side of the clbow, where it anastomoses with a recurrent braneh of the ulnar artery.
The brachial artery in its whole length has a close relation to the osseous axis of the bimb, and allows, therefore, of heing eompressed in all situations against hone so effectually as to stop pulsation at the wrist. In the lower part of the arm where the yessel winds in front of the bone, compression is required to be made from hefore baekwards. In the middle aud upper parts of the arm, the vessel lying along the inner
side of the humerus requires that a side of the humerus requires that eompression be made from within outwards. In the axilla, it is possihle to compress the artery against the head of the humerus, especially when this part is rotated downwards. The basilic veiu lying in the eourse of the artery, in these three situations, will have its circulation at the same time arrested, In the neek, where the artery arches over the first rib to enter the posterior triangle, the vessel may be in some measure compressed against the hone, espeeially if the eleido-mastoid and scalenus museles be reloxed.

Having examined the surgical relations of the prineipal bloodvessels in the neck, axilla, and arm respectively, we sball find on comparing those regions together, and viewing the main artery in its continuity, that we are best enabled to appreciate the facts which are of most significince in refercuce to deligation of that vessel. The proper site for a ligature, for whatever ease required, is (aceording to gencral opinion) one allowing of the following requirements-the arrest of the direct circulation through the muin artery above the part affected-the greatest possible freedom for the collateral currents throngh the anastomosing lranches of the artery above and helow the ligature and the disease-a secure hot for the ligature at a sound interval of the vessel, the longest between the roots of collateral branches, - and the exposure of the vessel at a situation the most accessible. Viewing the normal condition of the main artery as represented in Plate IX. Fig. I, I slall remark first on the anatonical circumstances which may admit of the concurrence of all, or of the principal of those advantages, as well with the object of maintaining the life of the limb as with that of influeneing the disease of the artery.
Between the sterno-clavicular junction and the bend of the ellow the main artery, \mathbf{I}_{1} exists as a single trumk, giving off branches to atlyacent structures, and heing itself destincd for the supply of those more distant in the forearm and hand. This being the usual form of the artery, it will be seen that at whichever point we tie that vessel we cut off the direct circulation from the distal part of the limb, and leave this solely dependent for support upon the anastomotic hranclies. In respect to this particular, we find the arm to be less favomably circunstanced than the head as to the sources of viseular supply, for whereas the latter is served with many priacipal arteries, any one of which may be obstructed without very materially lindering the direet cireulation through that part, the nrm having but one main artery, the obstruction of this vessel renders the limb comparatively isolated. It being equal, thercfore, as to the effect on the direet cireulation whether the main artery of the upper limh be tied in the arm, in the axilla, or above the clavicle, our choice of a situation for performing that operation where the vessel is nost accessible and least beset with branches which may disturl) the ligature, can at once be determined. In the arm the artery presents those advantuges in a more marked degree than it does above the claviele, and more so in the latter place than in the axilla. But as the safety of the limh is jeopardised not only ly the ancurism but by the operation demanded for its enre, seeing that in obstracting the direet current of blood through the disease we obstruct it also in respect of every distal part of the limbi the consideration of chief monent now suggests itself, mamely, at what. sitnation may the ligature he applied to the main artery, with due effect on the disense, at the same time that the grentest. anount of collateral circulation is mantained for the support of the limb. To decide this point, the form, number, and position of the anastomosing branclus should be examined.

The brancles derived from the main artery, hetween the stemoclavicular junction and the bend of the ellow, I find to be, in regard to anastomosis, divisible into two classes, viz., that one in which, above the axillary folds, r, they anastomose in reference to the thorax nud shoulder ${ }_{1}$ and the other in whieh, below the axilla, they anastomose in refirence to
 and this termmates the thoracie series, $8,7,6,5, \& c c$. The largest of the Dmelial branches is the superior profundus, 10 , and this commences the hrachial series. Between those tro elasses of brancles it will be obserred that the points of anastomosis are but few in number and small in sizethe most noticeable of them being those established aromid the slonlder. joint hy the cireunflex limmeri and acromial bumches, and the recurrent offsets of the superior profundus. Such being the auntomical condition at this particular part, we have from it a rendy explanation why deligation of the prineipal artery here is less promising as to a fivourable result than elsewhere ${ }_{j}$ for the only chamel of the direct circulation is obstructed

Where the anastomoses are fewest and in leauf force between the branches alove and below the ligature. Cimsidering, therefore, that the portion of the inain artery interveriug bettreen the roats of the annstomosinge hraneles is, ns it were, the connecting bond between that half of it whels belongs to the hody and that which liclengs to the limb, I buckeve it may be stated upon anatumieal proof, as strmen as mathemarical, that the further upwards or downwards from this place we fix the seat of operation, the less wee imperil the future safety of the limb. By tying the ressel nt this part, we almost isulate the limb from the central circulnting forec: Thereas, by tying it at some distance alove or below the part, though eerninly we arrest the principal curront all the same, yot we leave in frec action the largest amount of brachio-axillary collateral eirculation. 1f, for example, the ligature be placed alove one or morr of the axillary luranehee, these, receiving the blowd ly nnastomosis from others distributed over the thoms nad seapula, contrilute to maintain the circulation in the prineipal ertery helows the ligature; and if the ligature be placed betew one or more of the brachial Iraneher, these, as wellas the axillary receiving the direct current of the main vessed in full force, are in a condition better fitted to conumuivate that force to such branches as they anastomose with, below the sent of chstruction. But in making these calculations on the condition of the main artery; iu its normal state, it must be understood that howerer true they huys thus far prove to be, yet they are liable to the more on less fristrated, not only lyy the existence of some amonalous condition of that vessel, but by the pesition of the disense or injury affecting it.
In the arm we not unfrequently find, instead of one principal artery; two or even three existing in its course. On examining at their source these supemunemry arteries, they are fonnd to oceur simply in consequence of a high division of the brachiat artery. They are the arturies of the foreamu which usually arise from the parent vesseh, at the bend of the clbow. The rarying characters of thase vessels are those of number and place of origin. They are either two or three in number, according to the divisions of the principni artery, mud they are all long or short, or severally of various lengthe, aceording to the place where they arise. The main artery, as a general rule, divides less frequently in the upper than in the lower part of the nim; in the axilla it but very seltom divides, and as fir up as the clavicle, never. The most frequent variety, as to numher, is that in whieht tivo arteries appewr, and of these the additional ressel is more often the radinl. But of whaterer kind those deviations from the normal condition happen to be, the following circumstances any he regarded as pretty certain. The plurality of arterial ressels seldom or never exceed three in number-they follors the usual course of the brachial artery-they hold a close purallel relation to each other, uapeciaily in the npper part of the limh-they supply the furcarm in the same manner as the ordinary modinl, uhnir and interosseons arteries-and they anastumose freely with each other in the land. With these generailfaets in inemory, we are prepared to nect (at least. with an explanation) whatever inconvenicnec they may occasion in practice; and the cases in thich such inconvenience may arise are fortunately but fur in mumber. For: an anenrism in the arm, or an aneurismal varix at the bend of the elbow; when it is required to tie the brachial artery above the disease, if on exposing an artery occupying the nsual position of the brachinl, we tie that vessel, and find, nevertheless, that the tumour is still strongly pulsatile, we infer, not only that two priueipal arteries must exist, but that cither the ancurism is wholly sprung from the vessel untich, or else that this vesset directly eommmicates with the tied one abore the place of the disease, or at the disense itseli. In such au erent it becomes neecssary either to seek for ond tie the additional artery at the present seat of operation, or to expose and tie the main artery above its point of division. As, however, it may not. be possible to find the additional artery, and cren if fonnd, buother may prove to exist, and as, moreover, it cannot he known for eertain at wbat exaet point the high disision exists, we bave

FIGURES OF PLATE $1 X$.

Figure I.

A. Sterio-manstoid mulsele out. - B. Auterior sealemus muacle - C. Stemo-laryngeal

 artery. - iz. Biep mas musle

Fucke II.

All yurts except the filluwiag tue haukel os in Visun- 1 .

 \%. Biempo musedre corverd ty fuwill.
but to retum in this dilemma of donht, growing upon doubt to the one plain principle which no amonnt of anatomical experience in these matters can sender more practicenlly efficient, namely, to tie the bleeding ends of all arteries where womnded, and of that which is diseascd at points as near ins may he on looth sides of the disense. Indeed, while acting npon this principle, and thereby assuring oursclves that we operate in direet reference to the diseased ressel ${ }_{1}$ it appears to me that the individual in whom this plural condition of arteries in the arm exists, is more happily gifted than otherwise; for, while it requires the operator's care to choose a site for tying the normal single hrachial artery, where anastomotic currents may he in freest forec, this care is the less necessnry where an additional principal artery is present arising above the ligature, and passing free to the forearm and hand.
The sent of an ancurisn determines the site for deligation of the vessel so affected, but does not render voil the above-mentioned aratomienl considerations, and hy these it appears to me we slould be chiefly grided in the treatment of the following cases-l st. For wounds of the forenrm involving one or more of the artories there simated, we should rather tic the several cuds of the vessels in the wound than expose and tie the brachial artery, for by the latter proceeding we do more than is necessary for arresting the hemorrhage-we ent oft all the direct sonres of eirculation through the forearm and hand and leave these dependent upon the scaree anastomotic circulation aromen the ellow joint. 2nd. If the brachial artery itself be wounded the ligatures should be applied to that vessel in the wonnd. 3rd. If the brachial artery be affected with aneurismal varix at the hend of the ellow, the ligature should be placed on the vessel immediately above the tumonr, with a view to its being below the tro profundi branches, 10, 11, Figure 1_{1} ns the principal chamels of collateral circulation. Itll. If the artery be ancurismal at the middle of the amm, the direet cireulation throngh those branches becores obstructed and now if the ligature be placed on the main artery nt the folds of the axilln, helow the subscapular brach 9_{1}, the vascular connexion between the bimb and the body will be recheel to almost the lowest degrec of circulating force. To obviate this state, the hest position of the ligature would be about the middle of the axilla, for here the branches above the higature wonld maintain the collateral circulation by snch anastomoses as may exist between them and the brachinal branches, while those below the ligature, including the subseapular, would support a languid eurrent throngh the main artery hamless, as I belicve, thongli it be through the tumour ilso. 5th. When the nxilla is the sent of anenrism, there will be ${ }_{1}$ in mont instances, no room for tying tbe artery between the disease and the elavicle; but even if there were, there camot I think, be any reason (f)r our prefering this as the place of operation, when, with equal cffect on the discase, and far less anutomical diffeculty, the main vessel can be exposed and tied ahove the clavicle, and considering, moreover, that in the latter operation we remore the ligature firther from the disease ${ }_{1}$ and place it in a position midway between the cerrical and axillary anastomosing branches. In making these remarks, it will be seco that bitbe regard has been hat to choosing a site for the ligature, where it might be less sulpiected to "disturbance" by the prosimity of the origins of collateral branches, and this is owing to my reasons for believing that to other chnses than this are failures in the operation much more justly
nitributable.
Deligation of the axillary artery becomes necessary when that vessel is wonniled. The comse of the artery $y_{1} \mathrm{I}_{1}$ Figure z_{1} in the axilla would be indiented with sufficieut accuracy in the living body by a line
drawn from the middle of the clavicle, D_{1} along the peetoro-deltoid interval to the inner border of the middle of the hieeps musele. In the interval named, the upper end of the cephalic vein, m, and some offsets of the thoracico-acromialis branch appear, and here also the coracoid process, s_{1} may he felt t_{1} along the inner side of which the axillary artery passes. The incision usnally recommended for exposing the axillary artery is one made paraltel with the lower border of the clavicle, dividing tbe fibres of the pectoral musele trans. versely, so as to allow of their retraction; but this incision, it will be seen H_{1} torms a right angle with the artery, and is hence less convenient than one made in the dircetion of that ressel. While the limb is aloducted, if the incision becarried in the course of the artery and to the immer side of the pectoro-deltoid interval, the eephalic vein will be aroided, and the fibres of the pectoral muscles cut obliqnely, which will be found all sufficient. On retracting the divided parts of the great pectoral muscle ${ }_{1}$ N y_{1} we expose the comad attachment of the lesser pectoral ${ }_{1} T_{1}$ and this haring heen next divided and the ecllular substance and fascia $a{ }_{1}$ beneath it turucd aside, the artery will appear closely embraced, especially in the lower part of the axilla, by the brachial plexus of nerwes. This cirenmstance, together with the depth of the vessel, the number of branches derived from it, and the large size of the accompanying vein, M_{1} which fiequently overlies the artery, renders it a difficult task to pass the ligature around the latter vessel, with the care necessary for exclnding the nerves and not injuring the vein.

Deligution of the brachisl artery may, according to the nature of the ease, be requirel at its upperi its mildle, or its lower thirch. In the first situation the line of incision shonld coincide with the inner border of the corneo-brachiahs muscle, 0_{1} Figure 1 ; in the two latter, with the border of the biceps z. The basibe veim M_{1} lying over the course of the artery, may he rendered turgid and apparent by pressing it above the sitnation where the artery is to be exposed; and now an incision of an inch and a half or two incbes long having been made through the integuments, between the hosilic rein and the biceps, and directed towards the osseons axis of the limb the fascia, Y_{1}, forming the sheath of the artery, will $_{1}$ on retracting the cut parts, be seen. The artery, with the venie comites and inedian nerve, K_{1} being elosely enveloped by the sheath, it will be safer to incise that membrame on a director; and, this being done, the eontained structures come into view, having, according to the place of operation, the following different relative position - In the upper part of the arm, the artery laving the median nerve close to its outer side; in the middle of the amm having tbat nerve obliquely crossing over it_{1} and in the lower part of the arm, haring the nerve on its inner side. When the parts exist in this, their usual form, the artery can be reached with comparative facility, especinlly if, previously to the operation, we stretch and fix them, by extending the forearm; but oecasionally difficultics will be found to arise from one or other of the following causes-the ulnar nerve $\mathrm{K}_{1} 2_{1}$ when the incision is made high up in the arm, is generally exposed, and will, if mistaken for the median nerve, κl_{1} make us err from the place of the artery-the median nerve may pass beneath the artery, and be concealed, or may be removed somewhat to the inner side of that vessel-the artery, either with or without the median nerpe, may course apart from the border of the biceps, or one or both may be covered hy a portion of the brachialis muscle. In the doubt attending those cases, the situation of the artery can only be safely ascertained by the pulsation of that vessel; and by this means, also, we are to inform ourselves whether there exist more principal arteries than one.
ligatime from the artery, it appears to we that the primed the premature separmisu of the

 for eqposing the artecy tho uench waff denach thent antopard mosult which we wish to avoich.

 the turo inter wonts of the vessel numl learrat the ligature no tight ms completely to divide upan fles enter cast. Now the cuter coast is ithere fontimity of the latter ulone deyendent made, readend extruyasemar and ulsalately chend, from the finst moment after the knot is vied by her ligatures aud solely mamenins thend, twing to the contusiug compression exerpropertics nies wo lenow, umiter the ciramistramentimity hy its plysiend properties 'Phowo most a duy or two-a period in which the wher, wamerocol, lasting but a few hours, or at
 In the operathu as this pryformed the ningect is twofors.
 furconing the latter object wo frustrate bath. In fordere thit in the means used for empent in my tulno with yielding sillos, it is only requing to arrest ayoporarily the dirset
 ratio of the caliber of the tuber; and when that curnent is urvested by complussiunt, ito loree
is in the ratio of the area of the opposed surface,-is least at the point where the tube is constrieted, and greatest at the gides of the tule which it tends how to dilate. A tied grtery presonts this condition, and thurefore it in thot only superfluous to draw the lignture wulls of the vessel at the critical point requiring to daugerons, innsmueh is it weakeus the If, therefore, iss these lacts, there appear-any weason to indicreved entine for a certain time. question as to the necessity of ilividing the fancer to minnence onv node of operating, the very few words. We ill how diving the iauer conts of the vessel may be nuswered in a to induce the ellusien of phostic matter. The inflounnatory in nuy part is not necessary caulse of irritation is dipposed to produce that muticx, und elurely the presence ol upon any is sufficient cause to set up that actice that matice, and surely the presence of u ligature Of the circumata to get unp that action lir the mentioned ns tomilt.
ingecure, the two primoipal are, a disersod stace of the yese render the lold of the ligature of colluteral trancleas. Of the former al thece of the uessed, und a duse connexion th the roots sury to ung purpore, and hazumdows to the eafity of the onty hint, that as it is both unneces when the vesuel is somid, it umst ho nore so when it is disensed. Ay dow the lighture too tight by placing the ligatime near one or nore bommenes the disensed. As to the dnnger incurped auturl satito of the case, for while the retrogrmed the very contrary would seem to be tho force, und camnot disture, the liguture the bramel eirowation is at all times in minimum dilling foreo on the main urtery, foy serving usis a verate the ligative tents to climinish the larger those lranches wer, and the greater their unaber, the better must that servico be fultillod.

TIE MALE AND FEMALE AKILLE COMPARED. EXCISION OF THE MAMMARY GL.AND. MECH.LNBNG OF THE SHOULDER APRARATUS. ANATOMCAL EFFEC'SS OF FRACTURES, DISLOCATIONS, AND TUMOURS.

Tue differential features which eharacterise conresponding regions in the sexes are for the most part superficial. Whicn we submit those regions to auntomical comparison, we find them to be composed of parts similar, as well in relative position as in form and structure. These regions of the male and female being in this degree homologons, we are indued to inquire upon what circumstances the distinctions, such as they are, exist, and what is the signification of those distinctions. The sexual characters of form appear to depend solcly upon the fact of the same organ being developed to a larger size in the one sex than in the other: The fanale mammary gland is a phs-finly developed organ, which, comparced with the male mammilla, signifies that this lattev is numes as to quantity-uucvolved-rudimentary. This simple diversity of the greater and the less, which defines the sexual character of beings of the same speeics is indeed but a link in that chain of differential gradation whels extends not ouly thronghout the whole vertebrate animal suries of classes, orders, genern, and species, but is further produced through all varieties of individual formation, almormal ns well as normal-the ereated and known, as well as the potential or possille and unknown. This generalization is as eapable of demonstration as the fact, that out of the primitive circle all other geometrical figures may be fashioned.

The male and female asilla, containing respectively the same number and kind of parts, we fird that the differenee manifested between the nutward contonrs of both regions is owing principally to the cenlarged mammary gland, which, in the female, overhangs and masks the pectoral unscle E , Figure 2, forming the unterior axillary fold. When we view the dissected axilia from below (the ann being tatised from the side) it appears as a conieal recess bounded laterally by the upper part of the whm and the thorax, and antero-posteriorly by the large museles attached to the sboulder apparatus. As nill operative measures in reference to the axilla are performed in this position of the arm, the relative position which the parts now assume should be well considered. The principal bloodvessels and nerves will be observad to triverse the axillary space in n closer relation to the arme externally than to the thoma intermally. The thickness of the two pectoral museles, B F, Figure 1 , being very great, it will henee appear that the depth at wheh the artery, b, lies from the anterior surface must render it proportionately difticult for the operator to expose and tie that vessel at an incision made tbrough them. Ou moving the amn, we move at the same time the vessels and nerves in the axill:, and we notice the extent to which we can influence their relative position when necessary. Placing the arm close to the side, we contract the axillary space, and bring the vessels in apposition with the thorax, when they will be secu to form a gencral curve from the episternal region to the limb, the concavity of that curve being turned to the thoracie side. But on alducting the arm, and clevating the shoulder, the vessels and uerves assume a scrpentine course, the first bend of which hetween the clavicle sud head of the humerus is convex in respect to the thorax, and the secoud that bend which the head of the humerns projectugg downwards forees then to make between it and the inner side of the arm. It is when the head of the hunerus is rotated downwards that we are enabled to urrest the circulation in the artery hy compressing it with the thumb, against that bone. While the arm is raised, we observe the fascria which closes the humeral outlet of the axilla is on the stretch hetween the pectoral and latissimus dorsi museles, and nlso that in this position the vein, A, becomes more-elosely applied to the artery, conecaling the latter and the principal nerves, L is $N O$, of the brachial plexus.

The lymphatic bodies, 1 , which we find in the axilli, are unmerous and of various size. They are generally more numerous in the female than in the male. The greater part of them are situnted under the uxillary borders of the pectoral muscles, and others of them are in contact with the main vessels; the former leing supplied by the thoracie arteries, the latter by offects derived direetly from the axillary artery itself. Those bodies, when affected with stirlius, form large nodulated masses, orcupying in some advanced cazes of the disease the whole axillary space, eansing the shoulder to be permaneutly elevated to make room for them, and even then acting as a serions inpediment to the riveulation through the veesels, and to the free motions of the shoulder joint. The asillary and cervical lymphatie bolies forming a chain in the course of the vessels will generally be found diseased at the same time.

The contractile motions of the pectoral muscle of the male are distinguislable beneath the integuments, and the rammer in wheli it dutermines the form of the pectoral region, and bounds the axilla anteriorly, is in this sex well defined. In the female, on the contrary, we observe that though the pectoral muscle has the same relative position as in the male, the externul form of the pectomel region depends principally upon the existence of the enlarged nammary gland and the adipose tissue, in which this organ is embedded. The fenale lireast, consisting of the integunenta, adipose tissue, und glamdular body, varics in size and form in different. individuuls; but the differenee in these respeets is not so moneh owing to the variable dimensions of the true glandular part as to the variable quantity of the cellnan-adipose substance snrounding this organ. The gland itself is of a shape nearly hemispherical-convex in front and flattened helind. It is enveloped in a firm capsude of condensed cellular* membrate, which binds its lobes and bobules together into one mass isolated from neighbourugy parts. All the lactiferous ducts issang. from the lobules concentre towards the midale of the gland, and ut this place uniting into common ducts of larger size and fewer number, they form conical dilatations, and enter the nipple whel projects from the cutancous surface. The terminal ducts open at the summit of the nipple by separate orifiecs, varying from six to a dozen or move in number, white others are directed to, and ofter open on, the tubercles of the arcola, which are likewise lactiferons, not selarceous. These indiente to me that the organ is to be chassed with the tegumentary glands in general, but particularly with the sudoriferous g.lands, of which, in fact, the mamna is a modification representing an argeregate of those glands bound together, severally enlurged, hat still anatomieally similar to them in structure, though physiologically differing from them in function-iu the quality of the excreted fluid.

The mammary gland is retauned in its position chiclly loy the skin, which forms a pouch for it. In childhood, when the organ is rudimentary, the pouch dous not alpear, and the sexes in this particular are then madistinguishable. The ghand, on becoming developed towards puberty, forms for itself that receptacle, characteristic of the femule; while in the male the primitive form remains. In the virgin state of the ghand, its base is applied elosely to the fasciu covering the pectoral muscle, hat the connecting medium between the two, consisting merely of lax. lands of cellnlar membrnue, yields in the mintermal state with the incrensing weight of the organ, and allows this to fall apmet from the side of the chest over the anterior axillary fold. The gland luving assumed this pendent position, is then minfluenced by the motions of the muscles beneath it; but when it is the seat of scirrlus, it leconnes bonud to the pectoral

Figures of plate X.

Figure \mathbf{I}.

 Ficule 11.
All parta ane warked is is Fighore I.
muscle by that disease, and is thereby rendered comparatively fixed. In this state the niple hecoms depressed, owing to the tumefiction of the survounding tissues, and particularly also to the fiect, that the disease retracts the part by mans of the laetiferous ducts, which serve as bridles between the two. is the male brenst is manuifonn, bowing a glandular apparatus similar to that of the female in all respects save in size, so is it observed occasionally manifesting a physiological fonction, in imitation of the female organ; and it is in both sexes subject to similar discased conditions. In the male, as in the female, we find the gland to be the sent of scirvhs, but its occurrence in the latter is much more frequent, as might be expected from the circumstance of the greater stractural and functional perfection of the organ in this sex.
The bloodressels and nerves of the manmary glands heing small in size, are not particularly named. The internal manumary artery bas no more diveet relation to the gland than other neighbouring vessels. The suall terminal brancbes of this artery, these of the upper intereastal and those of the axillary thomeic arteries, supply the part scantily at all times, save that of lactation. When this process commences in the latter munths of pregnancy, those vessels enlarging take on an increased action, and their neempanying veins also hecome then enlarged. In this leriodienl vascular excitement the mammee express the state of the nterine organs, manifesting a similar phenomenon, the former preparing to assmme the ofliee of the latter in respect to the future support of the offspring. The nerves of the immmary gland are derived from the cervienl plexus, the intercostal and the axillary nerves. Those nerves are of the common sensory cutaneons class. *The lymphatic vessels of the mamme enter the axillary spaee, where they form the chain of lymplatic bodies under the pectoral muscles, and thence following the main lloodvessels, join with those of the posterior triangular space in the neek.
The brcist varies in form, and with those variations it is very necessary to be well acquainted, in order that we may distinguish clearly between the natnral and discased conditions of the part, as well as between those diseases which have a more or less eril tendency. Besides those diffirences in form and size, which naturally appear before, at, and atfer pulberty, and those which are owing to the greater or lesser obesity of the individunl at those several periods, it is stated that the two breasts of the same feomale geuerally vary in size, the left being greater than the riyht. The niphes, tho, are more prominent in some than in others; and instances present themselves in which those parts scarcely project beyond the cutaneous surface. According as the subcutaneons andipose tissace is removed, the thue glandular part becomes distinguishable
throurh the skin, as haring an uneren surface. This inequality appears through the skin, as haring an uneven surface. This inequality appears the noore marked, when in cases of cmaciation the adipose substance is alos absorbed from the alvedi or interlobular spaces. In this state, if the fibrous capsule of the organ be thicker than usual, the lobules whicb that membrane incloses and isolates from each other by septa present a dense nodulated appearanee. In eases of extreme lypertrophy of the fibrons structure, the true glandular part atrophies, and the breast laving degeneraterl into an inuocions filproms tumour (lipoma ${ }_{1}$) is bable to be mistaken n_{1} as being attacked with malignant diseuse. In aged females, who have borne many children, the unevemess of the surfuce of the organ is gencrally very apparent; the fibrous thiekening is also a natural condition, and in these likewrise the edge of the organ, never being perfectly smooth, miform, and circnlar, frequently exhibits distinet, irregular, rather solid prolongations of variable size and number, which, though mmanal and thercfore harmless, may seem to some the result of diseased action. The gland, which is in some feraales hemispherical, is in others chliptical, having its long axis extending upwards and outwarls in the direction of the shonlder, and sometimes not only overbanging the asillary bonder of the pectoral musele, but is in structural apposition with the upper pritt of the serratus magnus musele, and mingling with the lymphatie bodies in this situation. Like the fibrons aud glandular tissues of the breast, the interlobular adipose parts are liable to simple lypertioply, causing an uniform eulargement of the breast, when all
those parts are inereased, or isolated fatty tumonrs, when only one or two of them are in this state. In the former condition, operatise measures are of course inadmissible \boldsymbol{i} in the latter; only required for removing the deformity, and leat from the excessive inerease of such tumours, the true glandular strueture become ntrophied by pressure. A large breast is not always indicative of a large glandular organ, nor does the latter ahways hetoken a large secreting organ, for the breast may be more fatty than otherwise, and more fibrous than lobular. Between the gland and the pectoral misele the adipose tissue does not exist and hence fatry tmmours seldom appear in this situation. The breasts of the same female, though usually of the same form, and developed symmetrically in respect to the hody, are not invariably in this condition, and yet their dissimilarity is not to be attributed to what we understand as diseased action. The canses above mentioned of the deformity apparent between the breasts of different individuals may exist in those of the same person. The number of the glandular lobes of the left breast and the number of its ducts also may be less or more than those of the right brenst; and, naturally, the two glands in these respeets are varied nearly always. With these facts borne in mind, we are best enabled not only to distinguish the diseased states, but to judge aright when a cutting operation may be absolutely necessary and when not.

The breast is rery subject to acute inflammation, and especially at the period of lactation, whicb proves that it is in the glandular part the imflamation originates, and also that this is but an exeess of the matural vascular excitement capable of being avoided, and, when not carried beyond a certain stage, of being subdued by the timely process of suckling. This inflammation often indnees suppuration when not ehecked, and gives rise to one or more abscesses in different situntions circumscribed and isolated by the filmous envelopes of the lobules, or between them in the alveoli. Those ahscesses may also form in the ducts behind the nipple, or on the surfaee of the gland in the fatty tissue, or beneath the gland in the loose cellular tissue, connecting the part with the pectoral innsele. In the latter situation, it is difficult to detect the abscess until it. has advanced to a great size; and then wheu it is voided by incision, the cavity between the gland and the chest is so large as to render adhesion diffieult to produce, and a recurrenee of the purulent deposit inevitable. When, as in clronic abscess, the matter is deposited in one of the fibrous envelopes of a lobule and distends it, it simulates a solid tumonr; and this explains why the former case is so often mistaken for the latter, and not ascertained till during a cutting operation. The situation where an abscess points through the integument, is that at whieh the puncture should be made; but in deep-seated abseess, when the place of puncture is in some degree at the cboice of the operator, the surgical anntomist will avoid (as well as he may) opening the part near the nipple, behind which the lictiferous ducts eongregate, and if it be necessary to make the opening here, he will carry it in the direction of those ducts, so as to divide the fewest number of them possible. A dependent opening permits more readily a free continuous diseharge. During lactation, when the vessels are enlarged, and the vascular-supply greater than at otber periods, incisions in the breast may oceasion considerable hemorrbage; and as the gland has now assumed its seereting function, a wound of two or more of its principal duets made in opening an abscess may give rise to lacteal fistula, either directly through the skin, or indirectly through the cavity of the abscess.
The mammary gland being composed of many parts, for the disease of one part, wben requiring excision, we should not saerifice the whole organ nor any more of it than is absolutely neeessary. When any portion of the gland is healthy, and fit to be left, of course, in order to render it still functional, the mipple should nlso be saved. In non-malignant growths, such as the adipose anrl the small round moveable tumours, which prove to be only indurated lymphatic bodies, situated in the substance or on the surfice of the gland, that organ may, in most instances, be left intact compatible with their complete removal. This renark applies also to the malignant growths in their early stages, when they stand per se, not involving other struetures. As at first it is not

 in che silue firme, hum the serves of buth aro of the suma Kimu The ducts of both opeen by

[^0]
possible to distinguish between the two classes of tumonrs by any chat racter of pain or physical sign, the donbt inust still arise whetleq we should nvoid an operation as unnceessny, or perform it as a precantionary measure against finture ill consequence, or defer it till the discase manifests the usual symptoms said to be diagnostic of its malignant nature. Those symptoms which should characterize the tmmon as maliguant are, however, not themselves very clent. Any kind of pain may be catled "laneimating," at the will of the paticnt; any tumon' nay cause retraction of the nipple, and any irritation of, or abscess in, the breast, may produee enlargement of the axillury lymphatic bodies. In slowly growing thmours, which thereby mark their benlga natnre, the lymphatic bolies are said never to cularge, and this may be trae, but the sante is the also of the malignant thmon's in the early stages of their growth.

When it is required to excise the mammary gland from the male or femate breast, that operation (if the disense be confined to the struetme of the gland or to the parts in its immediate vicinity) may be nerfinqued in full confidence that no important vessels or nerses wilt he found crossing the line of section, however made. But when the axillary lymphatic bodies partake of the same disense as that found in the gland, they also requiring to be removed, will render the operation proportionately more difficult, according to their proxinity to the main vessels and nerves of the axilla. The shape of the extermal incision must be deternined according to the shape of the thmour and the degree in which it involves the skin. It is to be made parallel with the fibres of the pectoral nussele when extended. For a simple fibrons or fatty tumour a lincar incision will be found sufficient, as it allows of being widened, owing to the liree pendent form of the brenst. If the tumonr be a scirrhins of some standing, its molices branching through the entire gland, rad contracting adhesions, perhaps, with the skin and the pectoral mnsele also, the incision will require to be made double, so as to isolate an oval portion of the skin, in onler to effect the entire renumal of the disensed struetures. In this operation for excising a malignant tunour, the rale prescribed is that one "cmuot err in taking away too much," lont there is a middle course to be followed even here. When the axillary lymphatic bodies are bkewise scirthons, they must be extirpated, and, in doing so, due regard is to be had to the relative position of the main vessels and nerves. In dissecting the diseased parts fiom the axilla, the arm shonld be abducted as widely as possible, for the ressels become thereby withdrawn to tbe fullest extent from the seat of operation.

The axilla becomes very frequently the seat of morbid growths, which, when they happen to be beneath the dense fascin, and have attained a large size, press mon the vessels and nerves, and produce very scrious results. Besides aueurisms and enlargements of the lymphatic bodics, we fipd adipose and other kinds of tmours occurving liere, which, leing prevented protruding externally by the fasei) and muscles, press against the axillary vein, so as to cause cedema of the upper limb, and agyinst the artery, obstructing it to such a degree that the collateral circulation has to be set up, for the support of the momher: The desired effect of pressure on the main artery for the curc of muneurism of it is, in such cases, plainly illustrated and suggested to us for imitation by the hand of nature herself; and from her indication we should take amother iden, of no less pratical ntility in its own line-namely, the necessity for fashoning of a proper form, size, and consistence, all apparitus which, in fracture or dislocation of the shoulder bones, are required to support those purts, lest we cause such impediment to circulation and innervation as must remder our conative messure even worse than useless.

When abscesses occur in the axilla beneath the fiscia, this strneture will hinder the matter from pointing externally, and, in the meantime, the loose cellular tissue becoming disorganized and broken np, the fluid is allowed to burrow fistulous passages throngh the intermusculor spaces. The original seat of such abseesses is generally one or other of the lymplatic bodies, so prone to iuflame and supmrate on any emse of irrita.
tion, eqpectially in the scrofingors diallesis. The lymphatic. bordy is, in some cases, extconal to the fiocia, and the matter then gains a reody ouflet; hant when situated moder the fiacein, this numbrane requires to bee divided, and, in doing so, due regerd should lee hud to the position of the main vasels. The limb should be abducted or raised as much as possible, so as to render the liscin tense: and as the vessels take the dbreetion of the humerus, the point of the sealpel should penetrate in the opposite way
-townal, the side of the thoma.
The relutive anatomy of the several parts (bones, liganents, museles, \&rc., comprising the shonlden apparatns) forms a stidy of very great practical importance. This apparatus, Phatc X 1 ., Figures 1 und 2 , constroncterl fine the free action of the scapulo-lumeral juint, which is the innst moveable of all others, is necessarily surrounded by numerons and powerful museles; and it is fonnd, on every experience, thont those momeles, so suitahle for moving the hones when entire, becone the principal obstuekes to rearjustment when the bones are fractured or dislocated. The axilla is always concerned in these aceidents. It becomes distorted on their ocenrence, and the insportant parts contained in it are more or less iujurct, displaced, or obstructed. It. in here, morcover, that the relatise position of the disumited boues may, in most instunces, bereadily detected by the touch.
The osscous fabric of the shoulder apparatus consists of the seapuata nond clavicle, so comected with the upper part of the thomas, as to ullow them to more frecly in all brecetions, to faeiliate the motion of the יyper limb as a prelensile organ. The scapmla, on*, Figure ? is laid flat upon the back of the thoras, to which it is connected only by muscles, is sp. The breadth of the bone fulfils two pimeipol purpusts-vizo, to aflord leverage attachment to those museles, and a large surlice for yrliding motion and for steadiness. The maseles comected to the seppula perform the office of ligaments, but as motor powers they screve purpose whieh liganents could not supphy. The claviele A A, Figure 1, is placed in liont of the thomas, to the top of the central sternal loone of which it is articulated, and bound by ligaments. The eytindrieul form of the clavicle is in accordance with its uses; it is the lever of motion direetly acted upon by its own muscles, and indirectly by those of the sespula, while the first sternal picce, o, is the sustaiuing fulcrum of both bones. The chavicle and scapula are commeted together at the shoulder by ligaments, AGn, is well as by muscles, and bence it is that one bone cannot be moved without the other. The two bones are joined at on aughe, the apex of which is at the shonlder, and the base of which spons the thorax nutero-posteriorly. The anterior side of this angle, formed by the clavicle, being the only part which slmets articularly against the thomx, expluins why the clavicle, notwitbstanding its adaptation to its office, so much more frequently suffers fracture than the seopula, which is free in its position, and yields to impeling force from the shoulder. This mechanism, so fitting for the required action of the upper limb, can also be demonstrated geometrically to be, mider the circumstances, the best calculnted for preventing fractare and dislocation. The stemo-chavicular: articulation permits of motion, within certain limits, in all directions; and the scupula, unconfined exeppt by museles, is allowed, hy the reluxiation of some of these, to obcy those motions, while, by the contraction of orher museles, it promotes them. The thonas, reeeived into the scopnloclavicular open angle, tends, like a wedge, to sunder the sides of the lattex. when force is appbed at the shoulder, but the seapnla being lree, and allowing of a yieldiug motion, lacilitated nad yet governed by the acromioclavicular articalation, the force which ofhorvise might fracture the apparatus is, in a great meosure, distributed through all its parts.
The elavicle, A, and the acromion process of che scappuln, ch, projecting Interally from the small upper end of the thoras, are joined together and frmandere shonlder: In the interval between the shoutder and the thoma, the principal vessels, DE, and nerves, 12345 , have free space to piss to the arm, and suffer no degre, of compression noder any motion of the

FIGURES OF PLATE XI.

Figure I.

Figete 11.

parts. The progection of the sboulder serves also another use-that of bearing the seapulo-hurecol joint free of the side-a position necessary twits function. Tu addition to the acromio-clavicular juaction, the corncoid process of the seapula, F, Figure 1, is counceted by stroug ligaments, 1 , to the sutere cand of the chavicle. The lumerns is intienated with the sempula oaly; and lence it is that the shocks and motions of the former do mot influcuce the elaride, except throngh the serpplata, whicia is the more yiehling of the two shomber-bomes. The artienlar head of the hamerus is a hemisphere, while the articular fitcet of the seapula, of math smaller propartions than it, represents a vertienl ellipsis slighty loullowed to peceive it. Between the margin of the artientar sarface of the scapula and the neck of the Imnerns, in strong capsule, o b, Figure 2, exists; but this is so ample and loose as to serve but little in keeping the two bones applied to eseh other; in fiet, when the maseles nre removed, the humerns, suspended by the cupsular ligiment alowe, hanys from the scapula in a state of smi-dislocation. To this anatmaical cireumstanec, it is ustal to ascribe the comprative frequency of dislocations of the seapular end of the lumerns, and especially that iato the oisilla; but let ns here examine the benutiful contrivance which prevents those necidents being nore frequent flan they are. It is a law in physice that all jaints constructed to perform circomduction eujog this firedom of motion at the expense of inscenrity. The shoulder joint is constructell for this kind of anotion in a wider mange thin any other joint in the body, and lomee might appear its greater linbility to luxation. The glenoil articular fiect of the semplain is necersarily shallow, and of sualler diameter than the hemispherical face of the hunacrus, so as to allow the latter to move in cirenmetuetion; and in (very motion of this kind the bonew hesd to disartienlation. But in animal medhonics, we ohserve that wheu the safery of parts is thus stactified in wome degree for the gais of motion of one kind, the structural weakness is in an equal degrec fortilied by a compensative motion of another kiad; fore it is trute thit in none of the nutural positions of the limbs can displacement occur. The scajula not behy articalited with, bur crliding frecly on, the thoras, is thetely allowed to oppose its articulan fuce to that of the lumerus frecly in all directions, and the axes of those parts of both lowes thus coinciling, the fice of the seapula, though small, meets that. of the humerns with no less secmity to beth, than if the joint were a enp, and bull: and at the same time with uearly all the mange of motion of a foint of the undersal kind.
In recoguising to whit extent the shoulder bones are moveable on the timnk, we fan eatimate corpectly the amont of motion which the seapalohumeral joint is capable of performing. When the seapula is fixed and the aran moved in circumeluction, the latter deseribes a cone of which the hase is at the hama, and the apex at the shoulder-joint. 'this mage of motion is really little more extensive than that of the hip-joint. But when the actipula is frece, the arm moved in circumduction can deseribe a circle, the periphery of which is mumbed by the hand, the ceatre by the shonider-joint, and the radii ly the limb. This differenee between the motion of the upper and lower limbs is asesibable solely to the motility of the sespula in the one case, alad the fixity of the hip-bone in the of here" for on exumining loth joints in their reecent state, we find that their amatomical dissimilarity is fure lees than what we might iufer from the denuded osseous parts of cucla. The glenoid faect of the scapula is not the only part of that bone with which the lanuerns articulates. The neromion and coracoid proeesses, with the strong fibrous batad between them, constitute an esseutial part of the joind provecting over the glemind face, forming with this a deep receptncle fion the head of the humerus, gumerling the joint and serving ns nu adrantageous point of nttuchment for the delfoid nomsele. leotweed the conaco-aceonion arel and the hand of the huncerns we find in brge hursa, which is embedeled in loose fatty tissue and commumientex with the iaterior of the capnalar ligament. This bursi is a part of the capsule, mul its use is to obviate the effects of friction which the tubernsities of the lumerus exerecise against the cornco-neromial areh in all its motions. To the existenee of that wreh is chee the fact that dislochtion of the head of the humerns cannot oceme in nuy of the apward divections, and though we expreticuce the froquency of that aceident in the downmurd divection, it aust be confessed that this is owing more to the oversatam of the parts ngininst which in foint is seeure than to any unntomisal diflect. When the arm is bering alxhlucted to the full extent,
 commuricate that motion to the scipura, while this bone rolling on the thorax by means of the acrumial-elayicular joint yiclds to that forec, whech utherwise wonld tepled to digplace the lewal of the humerus into the axilla. But what that yielling of the scapulu is earied to the nathral linit, and the limb further strained in ubluction, then the eomeonactumalarel acts as a fulerum for the neck of the lumerus, and actually ficilitutes, ather
than prevente, the gecident. than prevents, the gecilent.
The mascles comecting the shonder bones with the trunk and those eon-
necting the humerns with the shoulder bones second eaeh other in netion. Cireumdnction is a combination of all the motions performed by those muscles is respect to the limh as a whole. Furthermore, the museles are so nurauged in respect to the hones and to each other, that aceording to the pmsition of the limb, they perform rarious actions; as, for example, those which serve to rotate the arm when addueted, foreihly adduet it
when abducted. It would seem to be owing solely to the tonie eonthation when abducted. It would seem to be owing solely to the tonie eontraetion of the muscles that the herd of the hmmerus is kept elosely appried to the yrumid fuee of the sempula, if one were to judge from the loose enpsular ligument as seen in the dend sulbject. During life, however, the eapsule, notwithotanding its looseness, yet contrihutes to the effeet upon a principle of its own. The eapsule forms a shut sac. Its inner surface is lined hy the mombrane whieh furnishes the synovial fluid. In the dissected state it presents as a bag having an interior or enclosed spaee; and the two bones which it eonnects fall apart from cach other, but in the living state $n \mathrm{n}$ stch carity cxists. The eapsular sac is during life completely eollapsed, and while the folds into which it is throma around the joint admit of the neecssary free extension in the various motions of the head of the humerns, yet this bone never leaves the glenoid freet, to which it is appplied as elosely as by suction. In faet, not only this, but every other joint when whole, as in life, is a pneumatie upparatns, the two bones adhering together on the sume principle as the bell-glass of an air-pump adheres to the floor or tuble of that maehine.
When the head of the lmmerus is displaeed completely into the axilla, the calsular ligameat is always torn in that direction, and is dragged tenselyneross the glenoid faee of the scapula. In this accident the infra spinims, L, Fig. 2, and teres minor musele, K, are either stretched or torn, while the supra spinatus, x, is generally torn. The subscapular musele, 3, Fig. 2, is rent somewhat. from the venter of the bone; and the circumflex humeri vessels, 8,7 , and nerve, 5 , are generally inore or less injured, occnsioning paralysis of the deltoid musele and extravasation of blood around the joint. At first the limb is lengthened and somewhat abducted, owing to the low position of the head of the humerus; but after a time this being drawn uprards by the eontraetion of the coraco-brachinlis and biceps, \mathbf{k}, \mathbf{J}, Fig. 1, and deltoid muscle, r, either under or over the sultscapularis, and foreing out of their proper position the axillary vessels and nerves, the limb beeomes shortened and abduction is less markel. The pressure on the main vessels now inpedes the circulation of the limb, and cerlematons tumefaetion is the consequenee; while the pressure on the brachial plexus causes much pain, and oeeasiomilly paralysis of the limb, either partial or eomplete. In fratures of the humerus, either at its neek or below its tuberosities, the displacement of the parts is chiefly owing to the retion of the museles inserted into either fragment, but is seldom sucla as to obstmet the main vessels or injure the brachial plexus.
The claviele, a, Figure 1, forming an arch for the main vessels, D E, passing between it and the side of the thorax, it always happens when the bowe is fractured at its middle that they and the aeeompanying nerves sufier pressure. This will oecur whatever relative position the fraginents ussume from the action of the mnseles inserted into them. If the two fragments lie end to end, the pectoralis major, subelavius, B, and deltoid, re, cunse the arch to sink over the vessels, for those museles have a united power in this respect greater than that of the cleido-mastoid and trapezius inserted into the imer and outer parts of the upper surfaee of the bone. Whens the framents are displueed, the one riding over the other, the matural width of the sterno-acromial menasurement is lessened, and that part of the bone whiel is the lower of the two presses upon the vessels. The elaviele is gencrally fractured at its middle when the aeeident is occasioned by falls on the shoulder; for the axes of the outer and inner halves of the bone do not correspond-that of the former being hehind that of the latter. The weight of the limb and the attachanent of the delfoid muscle cause the outer part of the chavicle when fractured generally to sink below the level of the inner part. The relative position assumed by the fractured parts of the clavicle depends, however, as much upon the poiat where the injury happens as upon the muscles attached; but the subelavius becomes, by reason of its position, in all cases a principal agent in frustrating our endeavours to effect a complete adjustment of the tracture, at the sume time that it defends the vessels beneath it from being lacerated. Dislocations of the stemal end of the clavicle are unfrequent, and the baekward varicty more so than the forward one, because of the greater strength of the posterior than the anterion liganechats. In the displaeement backwards the trachea and carotid arteries
would be subjected to would be subjected to pressure. When the aeronion process is firetured much as if the mederd lases the power of abducting the aym, almost as mruecss over the head of the hamerus that the it by the projection of the thant mution.

COMMENTARY ON PLATES XII. \& XIII

THE SURGICAL DISSECTION OF THE BEND OF THE ELBOW AND TIE FOREARM, TIE WR1N゙M, ANO THE 11.LSD. VENESECTION, AMPUTATION. DELIGATION OF THE RADLAL AND VLNAR ARTFRIES, \&R.

Tue farther a surgieal region happens to be removed from the centre of the body, the less likely is it that accidents or operations whieh involve sueh regions will affect the life immediately. The limbs undergo all kinds of mutilation, both by aecident and intention, and yet the patient survives; but when the like happens at any region of the trunk of the body, life will be directly and seriously threntened. It seems, therefore, that in the same degree as the hiving prineiple diverges from the body's eentre into the outstanding members, in that degree is life weakened in intensity: and just as, aceording to physieal lavs, the ray of light becomes less and less intense by the square of the distance from the cential sonrce, so the vital ray, or wis, loses momentum in the sane ratio as it diverges from the common central line to the periphery. But in the hand those seattered rays again concentrate, and in their focal strength that. speeial outpost of the mind, the sense of toneh, is manifested. Ilence, a member of sneh great importance as the hand neeessarily elsims a high interest in surgieal anatomy. The hand is typical of the mind: it is the material symbol of the immaterial spirit; it is the prime agent of the will, and is that instrmment by which the human intellect manifests its power in creation. The human hand has a language of its own. While the tongue diseourses of the thonght by the word, the hand renders visible and demonstrates the thought by the work. This organ, therefore, whose fimess of form serves the mind for declaring its own entity in maturewhieh serves for realizing the invention, that is, ns it were, the mind's antograph, demands that we stay the ruthless scalpel, that we pause und be "eonservative" in our operative surgery. On this seore it is laid down as a rule strietly to be observed, that when this beautifnl and valuable member happens to be mutilated, in any of those varions aeeidents to whieh it is exposed, onr first eonsideration should be, not as to how many of its parts we ean dexteronsly deprive it of by operation, but as to how many we can contrive to spare, simee no mechanical ingemity ean fastion an apparatus crpable of supplying the lass of a finger, or cven of one of its joints.

The relative anatomy of the bend. of the clbow is of much surgienl importance, owing to this part giving passage to the principal vessels and nerve of the limb, owing to its leing the usual situation for veneseetion, and the seat of accidents happening to the main artery in the awkwart performanee of that operation. Whell we have removed the integuments from the forepart of the arm and forearm, Fignre 1, Plate Xll., we find numerous veins and small nerves passing in varions directions over the surface of the fascin. The veins congregating from the front, sides, nud baek of the forearm and hand, nt. first of small size, may be seen to become, by an union of two or more of them, larger in size and fewer in number as they approach the bend of the elbow. In this place they form two prineipnt veins, the basilic, B, and the eephabe, D, between whieh is n communicating branch-the median hasilic, fo, of the same ealiher as theirs, and from which another branch, F, arises and soon sinks beneath the fascial on the onter side of the bieeps tendon, a, to, join the deep set of veins. The cephatic vein, formed principally of those which eourse upwards on the onter border of the forearm, aseends the arm externally along the groove between the braehialis antieus and the hieeps rauscle. Here the extermal entaneons nerve first appears superficial to the fascia, and passing in the course of the ecphalie vein, branclies among the tributaries of that vessel subcutaneonsly as far down as the wrist. The basilie vein, commeneing by numerous small vessels, arriving from the imer side, fiont, and back of the forenm, and receiving the mediun hasilic, passes up the
nim internally aloug the groove between the hiceps and hanehialis nunecle. superficial to the fiscira; and having lying ou it the interual cutaneons nerve, which in descending divides alowe the level of the imucr condyln into three or taore brancless, to he distributed to the integumente of the front, imer, and buck parts of the farearm. Numerons other cutaucons uerves, isouing from the axilh, are to be found in the comrse of the basilie vein. The nerves of both sides, like the veins, form frequent emammications aeross the forearu; and some of the weins have the uerves lying on tbem.
The fiscia of the arm, A, Figure 1, is coutinuted over the foreman, u: and in both situations formas a sheath for each of the umacles. It the bend of the elbow may be noticed a fihrons hmul given aff from the immer border of the biceps tendon to hlend with the fascia, whiche curers the origin of the muscles arising from the inner coudyle. The median basilic vein, ri, rests upon this band; and the brachial artery, ci, with its wenav comites, and the median nerve, D, Figure 2, pnss beneath it. On removing the fascia and superficial veins, Fignte 2, we lying iu virw the braehial artery and median nerve, with the muscles. 'lhe basilie win will be noticed passing npwards in the course of the artery, the fasci:1 alone interveming between the two, and forming a sheath for the latele vessel and the median nerve. The vene comites, on cither side of the artery, eommunicate by cross brathes. In approaching the bend of the elhow the median nerve appears at a little distance to the inner side of the artery, owing to this vessel bending from it outwards along the inner border of the biecps. The difference of relations between the nerse and artery in different parts of the nim is owing rather to the modulating course of the vecsisl, for that of the nerve is straight.
At the bend of the elbow, the brachial artery, c, Figure 2, passes exactly midway between the imer eondyle of the humerus, G, and the outer margin of the supnator radii longus musele, s. The tendon of the biceps, a, sinking to its insertion into the tubercle of the modius, is here close to the onter side of the vessel; and the lmachinhis auticns nuscl-; f, supports it, and the medinn nerve. Opposite the inmer condyle, the artery is lome forwards by the brachindis mosele; but below this point it sinks backwards hetween the neljacent borders of the supinator longus, δ_{1} and pronator teres muscle, R, and here, if, divides into three principnl branches-the radial, the uluar, and the interosscous. . thore the joint it gives off an annstomorie lunch; and below the joint we find the ulnar artery giving off a recurrent branch to pass behind the inuer comdyln; while from the radial artery is derived a similar branch on its own side. The median nerve, D, passes noder cover of the promator teres, mid triverses the foream in a straight dircetion midvay to the wrist, and treneath the superfieial flexors, 3 P . N. In its course this nerve gives off the nuterior and posterior interossei branches, mud umerons others, to the superficial and deep flexors. The mhar nerve, b, pheses hehind the inner condyle, and enters the foream between the origins of the flexor ulnaris, Q, and superticial flexor commonis, w. In the foremm the ulum, fike the median nerve, rests on the deep common flexor.
From its origin in front of the tubercle of the radius to the earpal end of that bone, the radial artery; 1 , Figure 2 , passes in in couparatively superficial conrse. It is only necessary to turu nside the inner border of the snpinator muscle to expose this vessel in any paint. It its oricrin it is appronched by the radial nerve, which is a bmel of the muscato-ppiral. The radint nerve closely accompanies the artery in the upper two-thirds of the forearm, and then, leaving the vissel, passes bemeuth the fendon of

Figures of plate xit.

Figurr 1.
A. Biceps muscle covered by fiscin. - B. Busilic vein anul intermal mutancons , werve -

 plantic body.-H. Fasein.-I. Ralin1 artery, veins aud nerves-J. Uluar artery, veins
 ruwele

Figure 11.

Ill parta eswept the iollowing ure mumkel as in Figure 1.
 -L. Uliar uerve. - F. Brachialis antiens musele - U. Thnee conulyle of themeras H. Pluce of division of the bsachinal artery: - M. Plexer curpi madialla nmele - N. Fieswr

 longuz munele.
the supinatar musde, to be distributel to the integuments at the luack of the wrist and hand. In the upper pati of the foream the broad flesly portion of the supinatse muscle overings the artery: but towards the urist, where that and the flexor corpi radialis musele, y , c-nd in tendons, the wessed between them is covered merely by the fascin, and here it is only aceampmied by one or two small veins. The superficial position of the radial artery near the wrist, its being snpprorted hy the radius, ngainst which it may be compressed, and its being of larger caliber and more exposed than the nhare, are the eireumstmees which render the pulsations af the former vessel more readily and aceurately ascertainable by the tonch than those of the later. But it wonld appear that the comparatively grenter distinctness of the pulsations of the radial artery is chicfly owing to the fact of that vessed making an abrupt turn arouncl the upper end of the metacarpal bome of the thumb, and thereby ocensioning some degree of impediment to the current of lilood through it at that part.

The nhar antery from its origin, 1 n , to where it enters the hand on theinner side of the pisiform bone, k, of the wrist, prsses under eover of the sureeficial flexors. Its upper end is concenled by the pronator teres; its luwer part is between the flexor uharis, Q_{1} and adjacent tendon of the flexor communis, N. Its midale part is deeper than the other two, for here it is overlaid by the fleshy portions of the muscles. thent the middle of the furearm it eroses at an acute nngle mider the median nerre, and, leaving this, appronclues the ulnar nerve, whieh it aceompanies to the landthe nerve lying close to the imere side of the wessel. Small branches of the nitery lnop inwards over the ulhar nerve. Near the wrist the alnaw artery miny be felt in the living body beating as the ulnar pulse; but very obsencly, however, on accomnt of the tendons overlying it. In the niddlle of the wrist, the medion nerve, $n d_{1}$ is superficial, and enters the hand heneath the anterior amular ligaurent with the tendons of the superfieial common flexor mnscle.
lluving noticed the relations of the principal vessels and nerves at the beme of the elhow and foream, we may, before tracing their contimatious in the hand, re-exnmine them in reference to venesection. The skin cosering the bend of the ellow is thin and delicute in textme; and the sulcutaneous adipose tissue in which the reins are emberted being loose mad soft, allow these ressels, while diatemeded, to be disecerned beneath the surface. In some individuals, partienarly females, the weins here are much olseared by the atipose tissue and skiu. In malcs, especially of the lahominity class, they are very conspicuons at all times. On fully ixtending the forearm, the attery maly be felt pulsating about the level of the imeer condyle, hat close to the end of the biecpa, Below this point the filmons land of the liceps tendon on the stretch bridges the artery, renders its pulsation less evident, and hears forwand from that vessel and the mertimn nove, the median basilie vein which lies over it; but the interval thus necasioned is so small, thast the point of the lancet shonld be always guarlecl. The uthost smution, howerer, will not in all instances prevent the occurrence of arterinl hemorrhage; for it not unfrequently happens that a large frtery (tle uhar or the radinl), arising higher than msum firm the brachinl, passes here over the fascin in compmyy with the basilic vein, and thenec in a superficinl comme townels its usual position ut the wrist. 'Fhis variety is move frequent with the adial than with the ulnar antery. I have, however, more than onee notieed a well-marked insance in melich the litter vessel, for its whole length, pulsated thens suhentunensly in the living sulgeet; and one ense of aneurismal varix, in which dissection showed a high division of the arteries, with the wallitional circumstance of an mion of them argain at the bend of the ellow. The median hasilic vein is generally more conspicoous than the median
cephalic; lint the latter vessel not being in the eourse of the artery, is the safer of the two for the opcration. Th opening cither vein, the cutaneous merves which happen to fie on it are liable to be wounded, and this is particularly the ense with the median cephalie, whieh is mneh compliented with the nerves. But perhaps the precaution as to this matter is not so mrgent ns some would nppeur to suppose. The permanent eontraction of the museles occasiming flexion of the clbow joint, whieh sometimes follows a wound of these nertes (if, indeed, it be from a wound of these, and not of the medinn nerve), is an effect I eamot aeconnt for upon the physiology of nerves as at present tanglit.
In order to distend the reins for venesection, their aseending currents require to be arrested by a band passed around the arm above the point to be incised. To effeet this objeet, a moderate pressure will be suffeient; for if it be too great, we obstract the circulation through the artery, aud the reins not reeciving the recurrent blood will not be distended; whereas, if the pressure be too slight, the circulation in the vins will not be impeted, so as to render them turgid. By exereising the muscles, the pressme urges the deep reins to empty themselves into the superficial ones, and besides this, the arterial enrrent is rendered more rapid. To make the seetion lengthwise in the rein, is the safer way in all pespects, for the nerves, passing parallel mith the vessels, have a better chnnce of escerping injwy; the vein also is less apt to swerve from the lancet, and lrence less likely to endanger the artery. In performing this operation, it will be woticed that in pressing with the left thmmb upon the vein im. medintely below the put to be opened, that vessel becomes less distended than previonsly. This is owing to onr interrupting the current from below, and also to the fact that the blood in the part of the vessel between the thumb and the constricting band above passes from it through the communieating vein, F, Fignre 1, which sinks beneath the fiscia, near the biceps tendon, to join the vene eomites. 'To obviate this oecurrence, it will be only neeessary to place the thumb below one or more of the next commmieating branehes. As long as the bleeding is to be continued, the bnad should of course be left in its position, for as soon as it is removed, or even loosened, the flow ceases. In lean muscular snbjeets the veins generally appear sufficiently large, passing over the fleshy part of the forearm, and in this situation ore or other of them may be incised widh all the desired effect, and witl most snfety to the brachial artery.
On removing the integument from the palm of the hand and fingers, we find the subeutaneous cellular membrane interspersed with onuch granular fatty substance, and, in this, numerous small branches of arteries, veins, auk nerves, serving the skin as the speeial organ of toueh.* When this substmee is eleared away, the pamar fascia nppears, having, in front of its upper part, the palmaris brevis muscle, which consists of a thin layer of fibres, stretehing between the museles of the thumb and the inner border of the hand, and evidently for the use of contracting the prim transversely. In the middlc of the palm the faseia is of considerable thickness, but where it invests the muscles of the thumb and little finger it is thin. In frout of the carpus we find a remarkably strong band of fibres (the anterior annular liganent) attached externally to the seaphoid and trapezoid hones, and interually to the unciform and pisiform bones. The fiexor tendons, with the merban nerve, pass under this ligament to
the hand, and play fresly in the bursal the hand, and play freely in the bursill canal forned between it and the earpus. The fascia of the foream being eonnected to the upper edge of
this band, and the pabar fisein to its lower, while the ate this band, and the palmar fiseia to its lower, while the latter is joined to
the bones and tendinons part of the mete the bones and tendinons parts of the metncarpo-phalangeal joints, it will be observed how, when matter forms beneath the fascin of the palm, it
can readily make its way into the forearm can readily make its way into the forearm by passing np bencath, the
annular ligament along the flexor tendons.

[^1]

commentary on plates dil. \& Xill.

The prineipal arteries and nerves of the forearm traverse the front of the wrist and enter the palm, to be distributed to the structures here sitnated whiel are of greater number and variety than those on the back of the haud. When we lave removed the fascia and subjacent cellular substance from the palmar and dorsal surfaces of the wrist and hand we find the vessels, nerves, tendons, and mirscles, althongh arranged in definite and beautiful order ${ }_{1}$ exlihiting what may appear on the first view, owing to their great number, rather complex relations. The course of the arteries and nerves may be best explained nfter noticing the form position, and attaclunents of the several muscles in reference to the osseous parts.

As the museles of the arm net on the forearm through the medium of the elhow joint so all those of the forearm aet on the hand, hy the intervention of the wrist joint. In the hand moreover we find a set of small muscles proper to it, and so placed as to assist and direct the nore powerful museles of the forearm in their action on the fingers generally, and on some of the fingers speciall y_{1}-viz, the thumb, the fore ${ }_{1}$ and the little finger. The skeletal hand heing naturally divisible into many articulating parts, all of which are eapable of concertive motion, and each of distinetive motion, the muscles are disposed in an order to serve hoth requirements.

In the hand the larger muscles of the forearm end in tendons-an matomical form which, without diminishing the effective power of those muscles, gives them greater precision in moving the fingers, and admits of the neeessary slender proportions of these. The small muscles proper to the band exhibit an arrangement in furtherance of the same ends. Tbey are situated in the palm, between the bones of which free motion is least required, and wbere their collective hulk so far from rendering the organ unwieldy, contributes to perfect it for its prehensile and tactile functions. The metacarpo-phalangeal members, five in number, consist each of four bones, articulating end to end, and in linear scries. The fingers, possessing three phalanges each ${ }_{1}$ are parallel; the thumb, having but two phalanges, is opponent to them. This difference 1 find to be owing to an early union of the element of the first with the second phalanx of the thumh, or with its metacarpal bone. The thumb minus a plananx, shortened in that degree, parted froms and turned to the palmar aspect of the fingers, is thereby rendered more fit as the opponent digit of the other four, and endows the hand with a fourfold advantage, not attainable if the thumb were in any otber relative position. The palmar muscles form three groups , viz. $_{1}$ that wbich surrounds the metacarpal bone of the thumb; that which is disposed in a similar manner around the metnearpal bone of the little finger; and that which occupies the middle of the pahn. The metaearpal hones, thus united by the muscles over which the fascia and integument are stretched, are thereby limited in their motion and constitute the elubbed palm, whieh serves, among otber uses, as a basis of support to the free individuabized fingers. Of the ligaments considered surgieally, it is only needed to observe, that those of the carpal joint are short, close, and numerous, as the bones they unite, while those of the phalangen joints ${ }_{1}$ whieh are formed principally for flexion and extension, are plaeed laterally y_{1} in a more condensed form than belind and in front, for in these situntions the tendons playing in strong sheaths of transverse fibres supply their place.
The hand, pendent in a state of repose ${ }_{1}$ assumes a form indicative of the relative tonie power of its antagonising museles. The earpal flexors and extensors being of about equal power and number, allow the hand to hang midway by the wrist, between both their influences. But the digital flewors heing more powerful than the extensors, and heing, moreover r_{1} aided by the palmar muscles, canse the fingers, particularly the fourth and fifth to bend somewhat towards the palm. The thumb ${ }_{1}$ on the contrary, under the eontrol of its three extensors, whose united force is greater than that of its single flexor, appears more extended than flexed. When tbis natural balauce of the opposite museles beeomes disturbed, either by voluntary effort or by the dissererment of either
tendon, the joint obeys the action of the muscle whieh is eatire. The follow. ing are the anatomical effects of amputation of the several part sof the hand: 1st. In amputating the last phalanx of either of the fwo middle fingers, we divide the end of the common cetemsor tenden, but as this hus also a distinct attuchment to the second poalan. c_{1} it is prevented retrunting, and is still capnble of extending the remaining part of the finger. The tondon of the deep common flesor is also divided, and having been connected only to the last phatan, re, retracts free in its sheath, nseless to the finger. The
 powers of a single flexor and cutensor: But when the same part of cither the fore or little fonger is amputated, uro ertensars joined opprise the single effective flecor, and tbe finger takes a position accordingly. 2nd. When the second phalan.x of either of the four finyers is amputated, the tendons of both conmon flexors are divided ${ }_{1}$ and ${ }_{1}$ retracting, leave the firet phulanx almost entirely influenced hy the extensar". The lumbricales sum interrossed are then the only opponents of the extensor, but their flexive power is comparatively weak. 3rd. When amputation is performed at the meta-carpa-phalanyeat joints, we divide the tendons of all the diyitn! flecors and e.fensors, together with thase of the humbricales and interruseri, and, haviug no points of insertion into the remaining lones of the lrand, those muscles are rendered useless. 4th. Amputation of the phalanges of the thunb is followed by anatomical cffects somewhat different to those of the operation on the fingers. When the lose phatenar of the thumb is amputated, the tendon of the long flexor is divided, and hecomes useless. Flexion can then only he performed hy the short fleror, whose action, owing to its disulvantageous insertion, is very inefficient. The third extensor tendon is also divided, but the second, having a distinct iusertion into the first $P_{\text {lialan. }}^{1}$ acts upon this part. 5th. In auputation of the first phalanx of the thunb with the sesamoid bones, we divide sll the teudons except that of the opponens, inserted into the anterior cond of the metacarpal bone, and that of the first extemsor, inserted into its posteries. and. 6th. When the hand is amputated across the metacarpms all the diaital muscles are divided, but the remaining part of the member is still movenble by the carpal flexors und exkensurs. 7 tll . By amputating the hand at the wrist, we divide all the nuseles whicb act diruecty on it. 8th. When a tendon having but one insertion is severed, its proximal end retracts from its distal end so far as to prevent union between them, and consequently the power of the musele over the neighbouring joint is lost.

The hand being composed of the palm and five radiating digits, and the capahility of the organ heing eliicfly due to the relative position of those parts, it follows that its functional dectine must be more than commensurate vith its quantitive lass. The relative value of my part of it is, therefore, to he estimated according to its relative pasition, suld when planning an amputation this circumstance should first be well considered, test we sacrifice the more important part to the less. The following observations will serve to illustrate this subject: 1st. Tbe more the hand is truncated the less efficient as a tactile and preluensile organ it is rendered. If the distal end of any phalanx be disensed, withont involving its upper articuldar end, it would he preterable to amputate the part acroes the phalanx tham at its upper articulation, for hy the former mensure we leave the tendons holding their natural points of insertion, wherely the remaining part of the finger will prove the more eapable. In spuring a joint then at any situation, we not only save quantity, but retain function. 2nd. The lateral parts, as enjoying a greater freedom of motion than the central parts, are of more value than they: 3rd. A part whieh is permanently flexed can answer a better use thin if it were permanently extended, and therefore when, as by a division of the tendon, we eonvert the former position to the latter, we only render the inconvenience worse than it was. The presence of a purt, in any prosition between extreme extension and flexion, is, however, preterulte for some reasons to its absence. Itb. When a distal pladamx is removel at the joint the proximal one is rendered less capable of motion, for the

FIGURES OF PLATE XIII.

Figure I.

 palmar areh; $\langle\zeta b$, its digital brucclice.-CC. Unar nerve.-D D. Superficienl flexor cume munis digitorwan muele; $l d d d d$, its four tendons, $d^{*} d^{*} d^{*} d^{*}$, in their digital slesthsE. Filexor carpi inulialis muscle.- F. Modinn nervo; ffff: its branchea- - . Radial artery ; 92, its brunches to the thumb.- H H. First and seoond extensor pollicis musoles I. Abilucter minimi digiti ranscle.-J. Annular ligament-K. Flesor brevis minimi digiti inucle.-L. Alductor pollisis muscle,-M. Opponens poalicis nniselo.-N. Tendan of Aexur pollicis musele- O. Addactar pollicis unsole- - P P PP. Lumbriealas

Figtre 11.
All purts uscont the following, ane markel wes ia Fig. 1:-F. Pronatur qualintus
 M. Interosseal musches

Figure 111.

tendons which acted on the former part aided the motions of the latter. When the prosimul phathen requires removal, it, as being the support of the distal one, generally necessitates the sucrifiee of the latter also. 5th. The thumb, as being the opponem digit, is, with a finger, of more varied use than nuy numher of fingers without a thumb. But the thumb alone is ceren less capable than a single finger. 6th. The furefouger, as being noxi the thumb, is of more ralue than any other fiuger. Tth. Two adjacent fingers, with or without the thumb, prove more convenient than two distant from each other. 8th. The loss of the last phatame of the thumb is greater than that of an entire finger, hut with the remainder of the thumb and nny finger the use will prove greater than that of which any two entire fingers are caprble without the thumb, for paralled members nie less efficient than those in opposition. 9th. The deprivation of the fingers and thumb is a loss equalling the subtraction of five parts from nn interer of six. The metacarpus is the sixtle part, and any quantity by which it is plus or minus, renders its nse greater or less. While, with any first phalanx, it retains the faculty of prehension in some degree, it can, even though reduced to half or even a third, perform. by the wrist joint, the motions of flexion, eatension, pronation, and supination, by which an artificial substitute for the hand beeones the better comterfeit of nature. 10th. Supermumerary digits, which nre motionless and inconformable to the direction of the others, are hoth useless and a deformity. Ith. A fifth finger, cven thongh it be anatomically similar to, and as capable as the others, may, fronı its singularity, require removal. 12th. The carjuts, as consisting of cight distinct bones, may, for a very considerable time, have its disease isolated to one or a few of them, in which case, by ereision of the affeeted part, the hand ean be sared from amputation.
The arteries of the upper limb usually aceord in form and number with its osscous skelefon. In the arm the prineipal artery is single alongside of the hunerus; in the forearms it brauches douhly with the radius and ulnn, while a third branch follors the interosscal ligament, which may be rectarled no the connecting part of those bones arrested in the primordinl stage of the ossitic proeess, to allow of their motions of pronation and supination; in the land it subdivides equally with the digits, whether these lec, as nsual, five in number, or supernumerary ones be developed.

The uhar artery, B, Figure 1, pmssing over the anterior annular ligament, close to the outer side of the pisiform bone, enters the palm under cover of the fascin, the palmaris brevis, and the thiek lajer of granular adipose substance here situated, and then turuing tormards the middle of the ball of the thimh, forms over the long flexor tendons, the supeyficial pulmar arrhh, B, with its curve downwards. From the convexity of the arch, the digital branches, $b b l$, three or four in number, arise ; and each of these passing straight to a point a livte above the interdigital elefts, subdivides into two others, which comrse, one on cach of the anterior adjacent lateral borders of two fingers. A single finger is thus supplied hy two rrincipal arteries of distinet origins in the palmar arch; and on tracing than to the tip of cach finger, they appear terminating hy direet anastomosis, the one in the other.
The rudial artery, e, Figure 2, having gained the outer horder of the wrist, passes henenth the extensor tendons of the thumb, and after winding ainuptly around the head of the first metacarpal bone, L, enters the palm, where it forms the deyp palnar areh, o o, hetween the long flexor tendons and the upper part of the metaearpus. The principal banches which it. gives off in this course are these:--one (superfeialis vole, Fignre 1), which amastomoses in front of the short muscles of the thumb, with the end of the supericinl arch;-a secoud, Figure 2, which arises between the leends of the first and seeond metacarpal bones, and fimses to supply the thumb and contiguons side of the forefinger, which parts are not served by the ulnar artery, -a thired, which is given off near the last, and ramifies orer the trek of the wrist, Figure 3, where it anasfomoses with the interossenl branches;-and a fourth, the termination of the ressel which joins the ramus prefunctus of the numar
antery betwean the origins of the short maseles, 1 K , Figure 2 , of the antery butwey the origins of the short maseles, in, Figure 2, of the
liftle finger. In the palm the deep arell sends branches haeknards liftle fingoct. In the palm the deep arels sends branches hackwards between the metacarpal boncs to the dorsum of the hand, whence they thrm upwards to amastomose with those on the back of the wrist, und downwards to supply the lacks of the fingera, and to anastomose with the ulnar digital branches in front. In the tip of the forefinger, Figure 1 , from the uhar. Besides these principal points of annstomosis betwed hoth ressels in the hand, there are comntless of aners notiecahle among their minor branehes. The nerves supply the fingers in an inverse order to that of the arteries. The medinn nerve, of fi, Figure 1, branches from the centre of the paln to the thumb, the fore, the middle, nud aljacent side of the next finger: while the ulnar uerve, c c; tranches to flie little.

日nd adjaeent side of the next fingel. On the baek of the hand the radial nerve supplies the skin of the thumb, the forefinger, and the near side of the middle; while the dorsnl branch of the ulnar nerve serves the little finger, the next, and the other side of the middle finger. The parts deeply sitnated in the palm are supplied hy that branch of the ulnar nerve which follows the deep branch of the ulnar artery.

The radial artery may be easily exposed for deligation in any part of its eourse tlurough the forearm. In the upper third of the forearin, where the inner border of the long supinator covers the vessel, if an ineision be made orer it throngh the skin and faseia, and the margin of that musele be turned outwards, it will he found with the venx comites, and having the nerve on its outer side. In the middle of the forearm, the same parts heing divided and separated, the artery, with the veins and nerve, will appear in the same relative position. Near the wrist the artery passes midway between the tendons of the radial flexor and long supinator, and is covered only hy the skin and fascia. Ou dividing the latter structures for ahout an iach in extent along the direction of the artery, this will he found still hetween the renæ comites, hut unattended hy the radial nerve.
The utuar artery being throughout its course more deeply situated than the radial, the operation for exposing it becomes the more diffienlt. The direction of the ulnar arters would be very aceurately inclicated hy a line drawn from the middle of the bend of the ethow to the pisiform hone. In order to reach the artery in either of the upper two-thirds of the forearm, the superieial flexors will have to be divided ohliquely, and this being accomplished, and the parts retracted, we meet with the median nerve (not the ulnar) here, in company with the ressel, and erossing over it at an aeute angle. Excepting, however, in eases of wounds, the operation of tying the vessel in this situation can never be ealled for, while with greater faeility, and the attainment of all other requisites, it ean he exposed and tied nearer the wrist. In the latter position the artery may be hronght in view hy dividing the skin and fascia in a line between the tendons of the flexors ulnaris and communis; and on turning those parts aside, the vessel will he found hetween its venæ comites, and with the ulare nerve close to its inner side.
The frequent anastomosis oecurring between the hranehes of the radial, uinar, and interosseal arteries in the hand, is the eause why a homorrhage occasioned hy a wound of either of those vessels, cannot he commanded hy simple deligation of its proximal part above the wound. If for a wound in the puhn we tie the radial or ulnar artery at the wrist, we shall find the bleeding stdl to continue, for though at the wrist the vessels are separate, their anastomotic eontinuity in the hand renders themas one. Hence, if the vessels of the palm be divided, and cannot he secured in the wound, it would be neeessary, in order to arrest the hamorrhage, to tie the ulnar. as well as the radial at the wrist. Even this measure will not, however, in nll eases, answer, and when it does not, the eause must then be that the interosseal arteries, whieh we know anastomose with the radial hranches on the hack of the wrist, and those with the ulnar branches,
sustain the hremorrhage. sustnin the hrmorrhage. Now, as the three arteries generally spring from one point of the main vessel at the hend of the clbow, and unite argain in the hand, they forn, as it were, a circle, and hence it is evident, that in order to arrest the eireulation through that eirele, either the three vessels must be tied, or the common hrachial trumk, of which they are the branches. The latter measure, as heing less diffieult, is gencrally chosen. But though the hraehial artery he tied for a wound of the pessels of the forearm or the hand, and though it may seem that we have put in proeess that measure at the very fountain-head of hrmorrhage, it by no means follows that the object of the operation cannot he otherwise than surely attained. The failure, when it does oceur, must then he owing to a high division of the hrachial artery above the site of the ligature, either into one or other, or all three of the hranehes of the forearm, which, whatever he the variety in this respect, invariahly anastomose in the usual maner in the hand, and thus, all the same, maintain the arterial circle. In consideration of all these cireumstances, and with the desire of adlering strietly to the most rational rule in surgery, which commands as well to do mo more than is absolutdy necessary, as to do no less, -not, for example, at the risk of the limb, to tie the braebial artery for a wound of one of its branches, any more than, at the risk of hemorrhage, to tie its braneh for a wound of the main vessel; we should then look for the vessel in the wonnd, and there command the hemorrhage by tying both its cuds. Whenever this can be accomplislied (and it always can be by extending the wound, if small, nnd the vessel deep), we need not then trouble ourselves coneerning the "anamaly" in arterial distribution. It is to the isolated thet that. mystery alone attaches, and on this we err. But when we view the whole great fact within whose span and compass, like an integer, all lesser fats are inchuded, we arm ourselves with reason, and
fenee ourselves against mistakes and atl misehanees.

COMMENTARY ON PLATES XIV. XV. \& XVI.

ANEURISM OF THE HEART, AORTIC ARCH, AND PRLMARY BRANCHES MECLIANISM OF TIIE CARDIAC-ARTERIAL AND THORACIC-VENOUS DOUBLE CIRCULATORY APPARATUS.

Tirs heart, whieh is the centre of the vascular system, is the only part of that system in whieh true muscular structure can be distinguished. Therefore as the arterial curcent is carried on solely ly muscular action, the heart must be the only agent in giving that motion to the blood in the arterics. The licart is evidently as actively contraetile as it is muscular; but the arteries are as evidently motionary by the heart's aetion alone, as they are non-muscular. The pulsation of an artery being synchronous with tbat of the heart must be eaused by the haurt; and as the impulse of the latter beeomes weakened in the ratio of the distance from itself, this fact alone is sufficient to prove not only that an artery has no action originating with itself, but that its motion is sumply of the elastic kind which results from the physical properties of the structures of whieh it is composed. Disseetion cannot demonstrate that structure to be musculnr, whose motion depends on other agency than its own, and this circmmstance preelules the necessity of experiment. While we find a finger to be mobide by a muscle situnted in the forearm, we do not want to prove the existence of muscular tissuc in the finger. Nor while the motions of an artery are those of the henrt, (the former commencing and ceasing with the latter,) need we seek to prove " arterin] muscularity." Granted, however, that in on antery a tomie power exists; in which of the soft tissues does such a power not exist in some degree? But who is there that on compaxing the middle cont of an artery with the substance of the heart's ventricle, (for in the brond contrast is the broad truth discernihle,) ean see their identity any more plainly than he can distinguish in the motion of an artery tiree kinds; that of contructility, of torieity, and of elusticity; the one independent of the other, and all three distinet from the motion of the blood in that vessel leading fiom the henrt? If the impulse of the ventricle on the blood, the passnge of this throngh the artery, and the clastic reaction of that vessel be sufficient to aceount for all the phenomena nctually manifested in the arterial current, (and doubtless they are sufficient,) what neeessity then is there to search for that stmeture in an artery, which neither the evidences of the senses prove to exist, nor the evidence of reason slows to he a naturnl require ment? From these premises it may be deduced that, as an ancurism is the result of the fortive dilatation of the artcrial conts through the mediun of the blood, the heart heing the originator of such foree must he the gmine cause of the aneurism, however much it may be aided to this effect by some secondary or proximate cause, such as struetural disouyanization, or some peculiarity in the form of a particular artery. The proazimity of the aortic anewrisin to the left ventricle, and the greater frequency of the disease in that situation, point directly to the heart as the perueipal cause in producing it; while, on the other hand, the conuparative surgity of the disease in places remote from the hart is a negative evidence to the same conclusion. Secing, therefore, that all aneurisms cxpress in their forms the measure of the heart's action, the circulating forces first demand consideration, forasmach as on these depend the common characters of the discasc, wherever nppearing,-its origin in the arterial system; its progress; its structure; its issue; and the one principle on which its cure is to be attained.

On reviewing the vascular systen, as a whole, the structure of its several divisions appears to me to afford such unmistakeable eridence of the respective parts they play in the circulation, that 1 do not hesitate to set down the following propositions, thangh they be at varianee with reccived doctrines:-1st, The only active part the heart can thete in the circulation is to propet, by rentricular systelf, the blood through the arteriat atameivele; 2nd, The masedur cirvle formed by the artery and hein is inative, and sirves but as a transmittont conduit for the blood from the heart centrifugally, and to it centringtally; 3rd, The chrreut flrough the renous semicrive must therefore depend on sone other influense than that of the hrart or its vessels. In support of these propositions I record the automical facts in the order and form in which they seem to me to serre.

The Heart is duplaw in form. It consists of a right and a left orgam, but these are so bound in apposition as to render the heart, in ontward appearanee, single. Each heart eonsists of an auricle and a ventricle, the chambers of which communicate. The two nuricles are similar in torm. structure, and capacity. The two ventricles are similar in the sance respeets, and this implies the symmetry of the heart as a whole. The nuricles at the base of the henrt are placed side by side: the ventrickes forming the body and apex of the heart are also in apposition. By their tonehing sides the two auricles form a septem, which divides their cavities from each other. A dividing septum is in a similar manner formed between the two ventricles. The auricular and ventricular septa form a plane, reaching from the base to the apex of the hemrt, and corresponding with the general medim line of the body, which marks not ouly the duality of every single organ, but that of the entire firame. Between the right auricle and ventricle a valvular apparatus (trienspid) exists, and is so plaeed as to allow of the passage of blood trom the auricle during its systole iuto the ventricle, when this is in its passive state; and also to prevent the reflix from the ventricle, when in systofe; into the auricle while passive. A valve of similar form and function (bienspid) is placed between the left anricle and ventricle. In the form of those valves is expressed the fact that the aurieles are active only in respect to the ventrieles, and can play no part in the general circulation, excynt thus locally. Corresponding with this very limited accivily we find the auricles to be (compared with the veatricles) but as membranous bays with thin and scattered muscular fibres entering into their structure. The ventricles, on the contrary, have thick muscular walls, indiuatiur that upon their action none the passage of the blool through the arterics might be effected. The two ventriches are, however, unequal as to muscularity, and signify their relatise powers in their forms. The left is more muscular than the right, nad this accords with the difference in the arca of the fields in which cach hus to propel the blood through its proper artury. 'The limge leing of much less dimensims, of more expansile structure, and more firourably placed in regard to the centrat eirculating force than most parts of the boly are, do not require the right ventriele to equal the left, or systemic organ, in powere Considero ing the heart, in its totality, aceording to this evinkence of its strmeture, it will appear that its cireulnting forec is to be estimnted in remard to the

Froune 1.-The heart aid primary blood-vessele of an aimit made, of their uormal form und rulutive position.

Flavir IT.-The ancuism, CCi projects from the right side of the usceudiug north, C , and hus ruptured into the pericardinm, F .
Fioure IIf,-The ancurism, C^{*}, projects fiom the right sido of the ascenting uorta, $\mathrm{C}_{\text {, }}$ withiu the pericaudiura.
 ollitomes the eavity of the right veutriele, AC .

Figure V . - The memism, CC, of the rent of tho antra, has mpured its ieft site (1, into the right pentrielc.
Fioter VI.-The aueurism, CC, formul of the right side of the asennting aurta, L'C: Fiotre vi-- The tho mominutu artery. The traethes is dispisced
Ftucre VII.-The asocalling aorta, C_{y} is unifinculy dilatasi.
Fiarre VIll.-A small panubel abeariam, C , projects fimm the aortie andi iv fivat of Flate of tho izeomisate artery, 1.

ventricles only, for the auricles are merely tramsmittents of the blood to them. Now, tuking either ventricle separately, we find it, like all other muscular organs, capable of only one kind of active motion, viz., conlraction. This motion is the systole of the ventricle, while its diastole corresponds to the relazation of muscles in general, or that fussive state which is the opposite to action. For the ventricle, or nuricle, therefore, to perform an active dinstole in opposition to its active systole becomes no less an impossibility thon for any single muscle to be aetivdy relaxntive as well as routractile. Nor is there any feature in the mechanism of the heart which would indicate the probability that the contraction of one compartment can effect the rataration of another; for this canmot be true of the ventrieles, since the systole of both is symchromous, and their dustole the same; while between the auriele and rentricle there exists no such balance of muscular power as wonld be adennate to effect snch a reciprocal change of state. The active force of the heart, therefore, being reducible to its systale, the motion imparted to the blood by the ventricle in this aetion can be but in one direction, viz., from the centre of the lody to the periphery through the arteries. From each of the ventricles a single main artery arises and hranches,--that of the right ventricle to the luugs, that of the left to the system generally, not excepting the lungs. Both arteries, therefore, form two separate systems of branches, and thus the two hearts, anatomically distinct, can only comline for a onemess of function, in maintaining the general economy of the cirenlation, under this condition, riz., the artery of the right organ terminantes in the weins of the left, in the lings, while the artery of the left terminates in the reins of the right, in all parts of the body. The facts which serve to illustrate the systemic circulating forces will hence also apply to the pulmonary.
The aortu exhibits a structure quite different to that of the left ventricle, from which it arises. The middle coat of the vessel is not only discontinuons with the muscular snbstance of the ventricle, but between both structures there appenss no commmity of character, either physieal or vital. I would not venture to make this assertion of the difference hetwect osseons, cartilaginous, or even ligamentous tissue, for there is a histologieal transition between them, but between the fibrons coat of the aortn and the musenlar substance of the ventricle there exists, as far as 1 cm judge, as marked a dissimilarity of structure as between tendou and muscle. The ventricular orifice is surrounded by a ring of tendinous structure, by which the artery is united to the ventriele; and this ring interrupting transition, forms thr line of structural demnecation. Whether in the living or the dead state we fud the principal characteristie property of the middle coat of the artery to be elasticity, and of this the ventriele is deprived; wherens, in the bving state, the ventricle is aetively contractile, and the motion which it imparts to the blood tells both synchononsly and rhythmieally on the artery receiving the blood. Elasticity is sufficient to account for this motion in the vessel; and thus here, ns elsewhere, the balance between canse and effect brings the urgment to its issue. The heart, being muscular, may be (as it is) actively propnlsive of the blood; while the aorth, being non-muscular, can lave no such powter, and therefore has not.
The arterios ure structurally the same as the common tronk from whieh they are derived. This is demonstrable: and therefore what is true of the anta must be true of thein. In no situation do we find them more capable than the aorta to cexert any active power in aid of the heart's impulse on the blool passing through them. On the contrary, by their very form and structure, they but lessen the leart's force, nor need we donbt (according to the law of mihil frustra) that there is such necessity for the circmunstance, that any marked activity on their part would be wather an mnfitness than otherwise. From their single cardiae origin to their minutest moltitudinous ramifications in the periphery of the body, the arterics form an unintermpted series of drereasing canals, whose total area being far greater than that of the norta must by diffusiom, by distance, by capacity of space, by friction surface, and also lyy the opposing surface, which the angles (right, acute, and obtuse) described by those vessels everywhere, exhibit, serve to werticn the central circulating impulse on the blood. If the arteries possessed nny active contractile power, this could only be available for furthering the circulation by a quick vemacular motion from the heart ontcurds, and in pace with the leart's systule, but no such phenomenon manifests itself: The intestine in which we see the slow vermicular action owes this to the existence of true muscular fibre; but with the diffisiun of this structure throughout the whole length of the organ, we mark the absence of an citimentary heart as a specinl notor agent in respect to the intestinal contenk. Perhaps, then, we need no better proof of the non-muscularity of arteries in general than in the very fact of the existonee of a vascular heait, fully adequate, as from the size and strenyth
of its ventricles this organ appears to be, to serve as a propeller of the blood through the arteries as passive conduits.

The capillaries are the ultimate ramifications of the arteries and the primary radicles of the rims, teruinating in, and continnous with, eaeh other, in all parts of the body. Viewed under the microseope, they appear as delicate tubes, forming a network of such transparent material ns to show the motion of the blood corpuseles in them; and, indeed, it is hy this circumstance alone that we are enabled to distinguish them as canals fiom the tissue which surrounds then. In such extreme attenuation do the capillaries present themselves, that between them and nothingness there seems but a degree, and, therefore, to suppose them capable of exerting any active power iu furthering the circulation from the arteries to the veins, and to believe in their "muscularity" so far as to attribute to it the "capillary power," would seem to leave nothing else for the microscope to reveal in regard to the universality of muscular ngency, except it be the existence of muscular tissue in the hyaloid membrane enclosing the vitreous humour, and induce us to infer therefrom the perfectibility of the organ of vision. But that the capillaries cannot be in any way active in giving motion to the blood, may, I thimk, be well beliered, not only from their actual visible condition, but from the structural analogy which must exist between them and the larger vessels of which they are the continuations. This, udeed, is confimed by the fact, that the motion of the blood per saltums in the arteries by successive ventricular impulse, is scareely perceptible in the capillaries, and the circulation in them is at a minimum degree of speed, and for this, without dunbt, (because it is so, there is a necessity, for we cannot coneeive how rapidity of the blood should be otherwise than incompatible with the processes of growth and decay-deposition and absorption.
The veins are in structure the same as the arteries, but the former exhibit, if possible, a non-mutsecturity even less equivocal than the latter. In the veins, the middle coat does not show the fibrous character in any marked degree, and can serve bittle other purpose than as a medium of uniou between their lining and investing membranes. As, therefore, the veins are placed bejond the range of ventricular impulse, through the intervention of the capillary system between them and the arteries, and as they (by the evidenee of structure) cannot have any active power of their own, it follows that they cannot serve any other office in the circulation than as inert channels for the returning
blood.

From the facts now stated regarding the structure of the vascular systen as it exists, the corollary deducible can be no other than this, viz., that the arterial curvent is attributable to ventricular systole alone, and that the wenous current being beyond the reach of that force, Wust be due to sonae power which the heavt is not capable of exerting. With this we at once close in upon the question;-to what ageney is the venous current ascribable if not to ventricular, to arterial, to capillary, to venous, or to auricular? The negative evidence eircumscribes and, as it were, eunneintes the positive. If the venous current cannot be the effect of either cardiac or vascular aetion, it must be the effect. of thoracic, and I proceed to prove anatomically that the pericardium is a structure as cssential to the circulatory apparatus as the plewre is to the respiratory.

The thorar is so perfectly adapted to its contents, and these to each other, that together they represent a mass without parted cleft or interval betoven them in any situation, cither central or peripheral. Tlus faet it is necessary during the examination of eaeh of its organs to keep always in view, for on it the thoracic-cardiae mechanism principally depends. When we would ascertain the full meaning of the thoracic ceonomy, the enclosed organs and the enclosing parietes require to be examined as a whole, for, taken alone, the eviscerated thonar can as little express the signification of the maehine of which it forms a part, as the case of a cllronometer, or the cover of a book, can indicate the design of the work
it receives. Anatomists, it receives. Anatomists, viewing the thorax in regard to its osseorauscular parietta, usually describe it as a single apparatus, bounded above by the neck, below by the diaphragm, and laterally by the ribs, \&c., and henee they omit to consider its median plane as being parictal: that it is so, however, and not only this, but tliat it plays an important part in the circulation of the blood, the anatomical facts seem to me to bear evidence. The thoracie parietes, by their csseous elements alone, do not enclose space completely. To see this eondition we have to add to those parts the muscular. And once admitting a variety of elements as necessary to the coustruction of the tboracie form, we then are at liberty to inehde as many others as appear to determine the chareacter of it in any way whatever. The form of the thorax may, therefore, be
considered according to the disposition of its membranous, as well as

that of its other parts, and by these I shall describe it $_{1}$ and show it to be a double apparatus, with two apices, two bases, and (taking both apparatus together) with eight sides, the two adjacent sides being meinbranousmediastinal.
The thorax is naturally divided into halves, and each of these is so disturetly marked from the other, as to exhihit of itself a complete chamber, contrining a respiratory and a circulatory organ of its own. If f_{3} in idea, we eleave the thorax from front to back through the mediastinume and through the cardiac septum, the resultant halves will contain each a lung and a heart, together with a complete pleumal sac. To this perfect sinditude of its halves and its lateral organs, its symmetry is due. But thongh by their union they coustitute that entirety which we name the thorax, and act thereby in concertive motion, yet the faet of duplicity still holds so true, that, anatomically, the thorax consists of a rivht and left apparatus, and, as such, eaeh mast have its own four parietes bouuding it internally as well as externally, anteriorly, and posteriorly. In illustration of this point, we have hut to consider the form of the mochiastinum, when we shall find that the very memhranes (the plemal sacs) which constitute it, are those which represent the imer or median sides of both pulmonary chambers, and in this eapacity they must he influeuced by the general respiratory motions.
The mediastinum is the interpleural space at the thoracie centre. In it both the heart and lungs are contained. On tracing the two pleurse from the eostal sides to the sternal middle line, we find theor here turning backwards, so as to face each other, and thereby to form the mediastinal septum. The two membranes come here into apposition at all points save where the viscera intervenc. Where the viscera occur the membranes attach themselves to them and beeome their immediate investments. In this way the right side of the pericardium takes a covering from the right mediastinal membrane, while the left side of the pericardium is in the same manner covered by the left membrane, and thus, aecording to the size of the heart, hoth memhraues diverge from the cardiae centre. Behind the pericardium, the roots of the two lungs (consisting respectively of the pulmonary vessels and hronchus) appear, and to each of these in bike manner the mediastinal merobrane of its own side is reflected, and the two separating thus right and left from the centre, and each forming a covering for the entire periphery of the lung are hy those organs expanded into apposition with all parts of the parietal portions of the pleurx, from the summit of the thorax to its base, and from side to side. Thus the pleural saes heeome collapsed at all points hy the lungs; and hetween the opposing internal surfuees of the sac of either side, that is to say, of that surface which is pulnonary and that which is parietal, no interval exists, or enn exist in the liealthy state in the condition of racnum; nor, indeed, in the diseased state either, for, when the two plenral surfaees are parted, the space mast become occupied hy something, cither fluid, zriform, or solid. Such being a general view of the manner in which the parts combine for thoracic incehanisn, the particular facts to which I would especially direct attentiou are these: $\mathbf{1 s t}$, as hetween the right and left pulmonary chambers there is no communieation, and as eaeb loeates a distinet pulmono-pleural apparatus, so may the thorax be regarded as duplex in form_{1} and each half having a separate motionary function, although we see hoth constituting a symmetrical whole, with sides acting in concertive motion. $2 n d$. The thorax consisting of a right and left complete apparatus, the mediastinum is henee to be regarded as representing the imere side of eael in contact, whilo the costal parictes are the outer sides of the tro in union. 3rd. Each lung assumes a form aceording to that of the thoracic chamber, right or left, in which it is situated. The extreme expansilility of the tissue of the ling enables it to do so as completely and subtilely as injeeted fluid. The lung diverges from the thoracic centre, where its pedicle appears, and from this it expands to a size equal to the area of
its containing ehamber. The form of that covering, therefore, which it takes fron the mediastinal part of the pleara of its own side, must be struck aceording to the lung, aud being, like the lung, peliderl, it follows that all the pulmonary pleura from this pedicle, around the whole periphery of the orghn, comes into slicting contact with all sides of the parictal plenra, as well that side which the mediustinume represcnts as the three others.
The peritardium, which envelopes the heart in the thoraeie centre, may be descriled as consisting of there layers of structures. The ontermost of these three is that part of the mediastinat flayra which is in immediate relation to the heart. The inmernost is the serous membrane which immediately invests the heart's sulstanee. The middle is the fibrous membrane, and is the connecting medium between the two serons. The fibrous pericardium appears as a production of the cordiform tendon of the diaphragm, on which the heast rests, and from the circumference of which the membrane rises up ahout the leart, enclosing this organ on all sides, and hecomes attached to the routs of the great bloodvessels. For each of these the filrous mombrane forms a funncl-shaped sheath, and is thence prolonged in the same manner over all the branehes of those vessels as their outer tunics. Thus as the heart, by means ol its vasculur ssstem, exteuds through all parts of tho body, so does the fibrous pericardinm hy its vasenhar prolongations. The innermost pericardium is disposed in a very different manner to the other two. It is of the serous kind, howerer, like that of the mediastinal cardiae investment, but while this latter is reflected from the outer surface of the filurous membrane to the lungs and thoracic parietes, the former, after lining the fibrous mombrane, is reflected to the heart itself. On dividing the three membranes and exposing the huart, we view the glossy internal surface of the imnermost one, and tracing this throughout its whole extent, we find it to he like all of its kind-a shat sac with a visceral and a parietal part. From this disposition of the serous lining perieardiac inembrane, in respeet to the heart and its chamber, it will he seen to bear a remarkably close aaalogy to that of the pleura in respect to the lung and thorax; and wecessarily so, for in fact the forms of bath owe their similarity to the eircumstance that the organs they respectively envelope affect them in the same way. As the lungs placed hetween the two pleurnl sacs take their immediate corerings from the melliastinal or contiguons sides of these, and expanding, earry those sides into universal contact with the thoracic parietes, thus forming absolate plewral collapse, so the heart, plaeed originally on the summit of the selous lining pericardium, hecomes, in course of development, eovered by the afjacent portion of that rembrane, and pouches this portion into contact with all the parital parts of the pericardiac chander, und so crentes absolate pericarlial collopse. When we speak, therefore, of the interior of the pleura or of the perieardium, that expression can signify nothing more than surfuces in general contact-a state which, as to included space, represents nihit, and, like vacum, is uninhalited, while the parts maintain their integrity. Hence, so long as this state obtaius (as during life, when the whole thoracie viscera colere in one ranss,) it is not possible hy nny motion or effort to separate them from each other, and cnuse even the smallest interval between them; for the motion of one induces the same mution in the next, and so on throughout the whole. In whatever direction, in the nexter, the thoracic parietes move in respiration, the lungs, on the principle of pleural collapse, must obey, and as, on the same priuciple, the lungs cleave to the mediastinum, and this strueture to the pericardium, and this to the heart, these must, at the sane time, and in the same direction, obey the same motion. This is self-evident, and no less governable by the common law of motion than when, as now, I attach the Principia to the Norum Organon, and see the two volnmes tarether ohey the traction I exercise on either.
Now the thoracic museles are the sole originators of respiratory motion,

FIGURES OF PLATE XV.

Fioure I.-The anourism, $E_{\text {, }}$ is formed by dilatation of the root of the norta, Δ, and pimjeota through the thomx on the right side of the sternum, K.
Figure II.-The anomism, E, is formed of the sunumit of the nortic nuch, betrues a right and leff innominate artery, BB.
Fhoune III.-Tho tmanaverse part, EE, of the nortic auch is unformily dilated; and at the posterior curve, a constriction, F, exints, which probnbly ocestioned the dilatntion.
Froune IV.-Tho racurismal dilatation, EA, affeots the nortio uroh in its asoonding, trausverse, and desconding parts.
Fuare V.-Two nuemrisms project from the aortio arcli-one, E, from its amperior curve, the other, E, from its inferior curve
Floun: V I.-A large aneurism, E, formed of the sumanit of the aortic arch, iDvolves the
primary branches, ECD, compresses the trachen, II, mud asoplilngus hackwants, nud strethehes tho norves on oither sida.
Fioinne VII.-Tho nuosri-m, E, projects triou the lerck of the nortio arvil, and diqutroces the trachea, \mathbf{H}, to the right side.
Fiatre VIII-A saceulated anourissh, EE, projects to the luth aide imm the praterior
 bead. The keft subelarian, D, springs five the entonour.
Florre IX-An anomisim, E, ainalar to Fipare VIII., is formed of the frome of the Horta, at its pasterior onrve, and comprisses the left bemelus, F.
Flaune X-The aorta, EA, ${ }^{+}$is colstrieted at its peoterint eures so we mhast to oblifarate its counl.
and they nffect the capacity of the thorax in all directions, from the niddle line represented by the mediastinal plane. We find, lowever, that under their influence this result is principally manifested in tro directions, nomely, the vertical and the transectse, and this bespeaks a tractiom, not from one costal side to the other, nor from the episternal region downands, but from the thoracic contre, ditargontly right and left, superionly and inferiorly. The inspiratory motion indeates this fuct, und the anatomy of the parts demonstrates $i t$. The centre of a distended spherieal sne is still, and from it dilating foree tends in all directions to the periphery. When two such sacs are pressed side by side, those sides fom the middle of the double figure. Let us now suppose those two sacs to be in a state of complete collapse, (the fleure) nod two others semi-distended (the lungs) to be placed in side hy side eonnexion befween them, and from each of the two central ones a tube leading, and those thhes the branelies of a common one opening externally, (the traehca and bronelii,) and all four enelosed in a larger sar (the thorax) in suel a manner that between it and them no interval exists in any part, it will result that when traction is made on the sides of the thoracic sac the tro tubud ones beeme filly distended, while the two collapsed ones still keep that state as previously. If, ngoin, a fith collupsed sac (the pericardium) be plaeed between the two immer ones, and le connected on cither side with these, and traction be made as before, it will be found that the fifth, being now the sustaining centre against sundering force. does, rather than allow vacant space to oconr in its interior, nddress itself to the lateral direction of that foree, and not until it jields to its full bmit can the tubed saes become fully distended; for to those it is the fixed centre. Lastly, if a sixth collaysed sac (the heart) and tubect (yenous) be enveloped by the fifth, and if the interior of the sixth be aecessible to fluid (blood) by its tube, it. will on traction being minde as before, hecome distended by that fluid as formilly as the bronelink saes dilate by air. Such being a simplifiration of thoracic meehamisn and its dynastic forees, we see how that the one motion may effect reapiration and circulation at the same time.
The duplex condition of the thoracic apparatus as a whole, being necessary to its retion, we have thus expressed the signification of thulicity. The right and left thoracie machines, as motor powers, are placed side by side. Their sides in apposition between the episternal region and the middle of the dindlragm, form the mediastinum, or centre, from which both act. This centre is membronous, and hence capable of yielding to dilating foree, originating in the external osseomuscular sides. Between the mediastinal sides of the two machines, the heart and arrat loodvosels are situated, rising from the diaphragm to the root of the neek. When both machines inspire, they tbreaten pleural collapse on their respective sides by a lateral traetion from the mediastinal entre and a doomeard traction by the diaphragn; hut the pleure maintaining their orginal state, the two lungs reeeiving the air through the tracheo-bronchial tubea, expand in the ratio of thoraeie dilatation. As in this motion the increase of the thoracic area is altogether peripleral, so mnst pulmonary expansion he principally centifingal; and this implies a foreible tendeney of both lungs to sequarate from caeh other, and fiom the mediastinal centre. The hrouchi cuter: the lungs at the facing (windwand) sides of those organs; and thongh from this amatominal fact I do not infer. (whether plausible or otherwise), a tendeney in the two lungs to be blown apart from each other, it is eertain that the bronchial chamater of their median sides, renders them here less expansile towards the eentre, than toutcorls their costal sides, next the source of motion; and hence that in the same degree as their costal sides follow the expanding thoracic walls, their median sides must ohey the same motion from the central line outwards, and earry the inceliastinal hyyers in the same direction. Now as we find those layers of the mediastimun to be in structural connexion with the pericardium mul the great bloodvessels, it is therefore eleur that whatever force tends to sumbler the modiastinum, must also operate in the same way on the pericarliac sides. But as the periendiun cleaves to the heart on the stune principle of eollapse as the lungs eleave to the thoracic sides, both mediustinal and costal, by pleural collapse, it follows tbat since the pleures are latiral, and the pericardium central, and traction incupable of panting (so long as collapse is true and perfect) the one membunc from the other, or the sides of the same membrave from eneh sther; the whode amount of foree must coneentrate on the heart iteclf, as the hollono central organ. It does so; and thass is affected the dinstole of the lieant, by agency of the respiratory muscles. A forcible tbastole of the heart being the effect then of a forcille inspiration, 1 give the iden of thoracie mechanism, in the exjression that, the pericarbum enveloping the heart, is a
eirculatory machine within a respiratory one - a tharax within a tharax.
laving now examined the heart and vessels, and judged hy the evidence of structure, which parts can he active and which parts camot bo; it may, 1 think, be very reasonably coneeded tbat as the heart is incopable of maintaining the circulation throughout, and as the vessels are incapable of seconding the heart by any active power of their own, so no correct theory of the circulation can be established, uuless we adunit thoracic agency as adjurant to the heart, and fully recognise that agency to be, if not more effective, certainly not less necessary than the heart to cause the phenomenon, as manifested in the higher classes of anumals. The mechanism of the thorax, as I have now considered it, in reference to the heart, would alone lead us to that conclusion. And, accordingly, secing the function reflected in the anatomy, I proceed to trace the circulation under this adopted view, namely, that the blood is ourrent in the arteries from the heart, by ventricular systole, as the sole propellant force, and that it is current in the veins to the hear, by thoracic ditatation, as the sole inductive force causing cardiac diastole.

The blood being the only contents of the leart and vessels, may be said to traverse vacuum, as well throughout all parts of the hody, as the lungs; and it is very mueh owing to tbis circumstance, that the circulating forees are cffective. During life the interiors of the auricles and rentrieles can never exist as cavitits, for on the systole of tbose parts they lecoune not only tenantless, but spaceless; and on their diastole, the blood inmediately occupies them in exaet proportion to their recipiency. Those facts mny indeed be inferred from the states systole and diastole; for the former is but as active collapse, while the latter, is but as passive relaatation, which the entry of the blood itself ehanges to distension. In the vessels the blood is always present, and always motionary, without complete intermission; and this proves (what from any circumstance we are not inclined to doubt) that in no situation does a localised contraction oceur on their part, so as to interrupt the continnity of their canals. In the artories the hlood is current from the hearl, with on impulsive motion, corresponding with the successional ventrieular systole; and the farther the vessel is from the heart, the less conspicuous that motion appears. In the veins, on the contrary, the motion of the blood is that of a continuous, uniform current; and the nearer the vessel approaches the heart, the quicker its blood moves to that organ; and the more evident it is that that motion is due to respiratory action-the hlood rushing centrally, with increased impetus, on inspiration, and slackening speed, so as to cause turgescence of the vessels on expiration. When we tie a principal artery (the suhclavian), we cut off from the ventricular influence the circulation through all the distal portion of the vessel; and yet this portion emptics itself, as also the veins which hold capillary connexion with that artery. This cannot be the result of the vis a tergo, neither can it be the effeet of the vis a fronte, considering that power as emanating from tho heart, per se; for it eould only occur by an active diastole on the part of the heart, which action is an impossibility; and as to the so-called "capillnry power," this is a mere nullity-a eause existing only in imagination. Hence, therefore, as the fact cannot result from any ageney on the part of cither leart or vessels, it can only be accounted for upon thoracic motion effecting the diastole af the heart's cavities, with a causative foree sufficient to produce it; and this is expressed fully enough in the combined action of the inspiratory museles, whicb the principle on wbich as I have shomn thoracie mecbanism is designed, allows them to exercise no less on the central heart than on the lateral lungs, closely embracing that organ hy pleural and pericardiac collapse. A further illustration of this may he had in the fact, that when for a time, respiration is suspended, thougb the heart's action does not cease, the hlood accumulates in tbe venous system and the rigbt cavitics of the heart, eausing an ohstruction which the beart itself is unable to overcome, and whicl returning respiration forthwith removes. That the circulating forces are thoracic, no less than eardiac, I find all general features of the vascular system nffording corroborative proof.

The arteries are permanently cylindrical tubes, and traverse the body, deeply seated, sidelong with the hones, and sheathed by resistent fuscio. In this position the coats of those vessels are doultless in some degree removed from atmospberic pressure, which as the blood is current in them, from the henrt, would hut impede its passage; and hence the reason of their place. When at each systole of the ventricles, thesc inpel their mensures of blood into the aorta and pulmonary artery, an onward motion is given to the hlood already in those vessels, even to their ultimate branches. At each diastole of the rentricles immediately suecceding their systole, the blood, reacted upon ly the elasticity of the arterics, tends to re-enter the ventricles;

commentary on plates diy. xy, \& Xy

but the semilumar valves at their orifees, now elosing by the retroeeding blood, prevent that occurrence. The suceession of this active ventricular motion n_{1} and this passive arterial reaction, explains the arterial pulsation. The arterial pulse is always synehronous with the ventricular inpulse; but the momentum of the vascular eurrent, differing as it does in different plaees, proves that the heart's circulating force is subject to the eommon laws of motion: it is greatest at the eardiac centre, it weakens in the ratio of the distance from that centre and eonsequently, it is weakest at the capillary periphery; where, in faet pulsation beeomes scarcely pereeptible. This effect on a fluid moving like the arterial blood in vacuo, must he chiefly attrilutable to frietion, and to the anatomical circumstance of the total area of the branehes being greater than that of the common parent trunk. At the capillaries, the ventricular force may (for the slow pnee of the blood shows the fact) be considered as about to cease; and here a new foree, caused in no degree by cardiac action, commenees.

In the capillaries, the motion of the hlood has all the appenranee of being transitional ${ }_{1}$ hy ene foree heeoming spent, just when another commences to operate. In those vessels, the hlood is of slow passage-meandering-lnhyrinthal: it is weakest in respeet to the arterial enrrent, and marks the expenditure of the ventricular propulsive foree; and in respect to the venous current it is also werkest as marking the first manifestation of the thoracic inductive force. This is preeisely what we might expect from the form in whieh the vascular system is distributed. A single vessel (the aorta) issuing from the heart as the central agent of the arterial current ${ }_{1}$ suldivides, successively, into countless ranifieations remote from that eentre; and from those suldivisions, an equal number of radieles arise and by sueeessive union of the many into the fewer r_{1} and of these into a single vein (the vena cava), ultimately terminate in the heart just as the aorta originated in it. From this form of ranifieation of the arteries and veins, we see the result to be the slow motion of the blood in the eapillaries, and this closes all argument on the supposition that the heart, whose only action is systolic, can effeet the venous current. Unless, now, thoracic influence be admitted, we view in the venous cireulation an effect without a cause.

The whole venous system, inelusive of the auricles, manifests, in its strueture and allocation, a correspondence rather with thorucic than with cardiac action. The miscular foree of the heart exereising no influence over the veins, the muscular power of the thorax and the pnemmatic principle on which this apparatus is constructed, comes now into operation to effect the cireulation through those vessels. The veins removed beyond the pale of ventrieular forec are (unlike the arteries which have to sustuin that foree) thin ${ }_{1}$ flaceid, inelastic tubes, increly sufficient to serve ns conduits of the blood current in them by force exerted inductivily whieh, therefore, cannot subject them to distending pressure. Uulike the arteries also, the veins are collapsible, and designedly so; for the better to allow of this effect by atmospheric pressure, they traverse the body, for the most part, subcutaneously. In the veins are found valves, formed by duplieatures of their lining memhrane. In the arteries valves do not exist cecept at the cardiac roots of the common trunks, and here they are situated evidently in referenee to the heart, as preventives of regurgitation. This expresses the use of the venous valves, and these themselves indicate not only the direetion which the blood takes in those vessels, hut that the power which moves it is alone thoracic. The blood moving in the veins from the periphery of the body to its centri, their' valves prevent its retrocession, to which respiratory motion, so liable
to interruption, voukl otherwise subjeet it; hut as the arterial current is from the entre to the periphery, arterial valves would evidently not only he useless, but obstructive to its passige. All reins, exeept the thoracir the abdoninal, and the eneephali,', possers ralves, and it would nppent that these are so conditioned in accordanew with the places they. respeetively oceupy. Considering the situations of the veins whieh are firenished with valves, we may infer therefrom their signification. Thu volved weins are those whiel are habitually (in man) beluw the level of the thoracic ecntre of induetive foree, and hence their ralves are 'ridently provisions for sustaining the venons hood ayainst graritution. The cephatie weins being above that level, and the pulmonary reins being an it, are not supplicd with valves, for these wonld lont obstruct the gronita. tion of their blood, which is direeted by that force, not from, but to, the heart. The functional peeuliarity of the portal system, as well as its position, is sufficient to account for the absence of veins in it. The veins are more mumerous than the arteries, nud of a greater total capacity than they. The veins, on that nccount, exhibit as well a recipient as a conduetory offiee, and this ciremmstance of itself would show that the heart eannot exert throing the arterial system a propulsive firce to maintain the renous eirculation, for eurrents in tubes (the arteries) of lesser ealiher, however great their velocity and momentum, must lose, in both respects, on entering trukes (the teins) of greater entiber in proportiorr to the difference between the eapacities of the tubes. In the veins the blood moves with less speed than in the arteries, and this may reatily be accounted for, not only by the greatro capacity of the reins, but by the less frequency of thoracic insiriation than cardiuc systole. Whereas, if we were to suppose that the henrt was the agent of the duductive force as well as the propulsive, the blood whieh it reecives by the reins shomhl equal in velocity the blood which it distributes by the artaries, else there roonhe oceur a disparity between the quantitios of issue and supply. The great venous trunk is formed by the congregation of all its lesser branches, while the great arterial trank forms all its own branches. This is t.ppieal of the circulating forees, and conformalle to the distinetion which I would draw between that which is cardiac and that which is tharami; for ns the arteries branch from the eentre to the periphery of the body, so must the heart's systolic inpulse weaken aecording to the inereasing square of the distanee from itself: and as the veins converge from the periphery to the centre, so must thoracic induction strengthen arcording to the decreasing square of the proximity to the thoracie cextre. The phenomenon of the eirculation perfectly exemplifics this mule, but while it does so, the heart itself (having but one action-systole, and the force of this aetion beeoming spent on the arterial semieircle) proves that it em play no more active part in referenee to the venous eireulation than if it were as motionless and dead-as Harvey's.

The theory of the circulation being inexplicable on the heart's action alone, we must then look for an assistant action in the thomx, and the mechanism of this apparatus answers our wants completely. The henre, sitnated at the thoracie centre, and enveloped by the collnpsed pericardium, this, hy the mediastiual sides of the collapsed pleural sacs, and these sides hy the emorapped hangs, is hy this menns brought nader the influenee of motion originating in the thoracie parietes. The thorax inspires and dilates in all direetions, but ehicfly mavolly and abiflonuinally, from the centre, and pari passm with that motion, the oplosite huys expanding, diverge from that eentre, while the diaphragm drsecmeds with the lungs, at the same time following it. By the inspiratory act, the two lungs refract the mediastinal membuncs from each other and from

Figures of plate xvi.

Fioune L-The benck of tho arch of tho oorta, A, is ancurimmal, and las ruptured by a small erifice iuto the traches, 0 .
 the aortic arch, lechind the branelies, B E F, nad hass rupthred iuta the truclea, G.
Fionte HI-An irregular nuctriswal dilatation, BHE, formed of the summit of the Fortic arch, iuvolves the primary brauches, and las nuptured into tho trizelen, G.
Fhaune IV.-The ancuriana, H, apringe from the summit of the nortio arch, belsind the primary brauches, BEF, comprestes tho trachen, dieplaces the cesoplagus to the len side, aul opens into this tubo ly two emall orifices.
Fhaves V . -The innominato artery, BOD , is dilated in the form of a manll rounded nneurism.
Frover VI ,-The inmominate artery, B B D C , is necurismal on its right site, and tho turaour indudes a portion of tho summit of the aorta.
Fiame VII,-The innomiunte artery, B B B, is diated into a largo irtegider nneurisnt Flomane Tho carotid branch, O, appears eprigging fivent the upper berve is ombedded in tho anterior wall of the tumour.

 ure tege.
Froerne X.-Tho innomimato artery, B , is ditated to a largo fisiforna noeurism, prom jectiag firm ite hifiuration upwards to a lorel with the laryux, and uighocing, tracleen and बenplhagns to the left sitc. The ancourism cunttins a whe which are still K, whide
perforate.

Fracne XI.-Tle innomiunte artery, B, is lurgely dilated, anal so distorts the parts tiut
 I, vagi and plucuicic nontes, and left primary bn widxes E
their orlinary lencth, owiag to the deqnesaion of tho howth
Fiacne XII. - Tho inuouinate artery, B is auourisurna in a fartu similar to Figure XI .
the middle line in the same way, and on the same principle as the thoracic outer sides retract the lungs; and as the mediastinul membranes form respectively a Intural investment for the pericardim, and are structurally: comected with this part, they carry it with them, aidening it towarts wither side from the cardiac scptad centre. While the lungs are acting on the pericardium laterally, the diaphragm is stretching it dormutard, towards the hypochondria, and by these opposiny actions the capsule of the henrt is rendercd tense. Now, as the pericardiom cleaves to the theart on the principle of collapse, just as the lungs do to the thorax, wo may well conclode that the force which tends to wilhdraw thle pericardium from the heart, and crente vroumm within it, will, in failure of this event, operate on the heart itself, and, as a hollow organ, dilute it This dilatation is the heart's dinstole, hut evidently it is not the act of this organ, but of the thomax; and as the veams current cannot be else accomnted for, it must be wholly dependent upon this act. The auricles are comparatively thin in their walls, and are therefore the more readily impressionable to dilating force operating on the pericardium. The right and left henrts in urion have respectively the lung on their own sides to ditate them, and this cffect could only be attained by the two lungs acting against each other, with the hear between them as the ecntre from which their traction tends in opposite dircetions. As, therefore, the whole cardiac apparatus of rentricles, auricles, and vessels, occupy the same central plane betwech the mediastimal layers from the root of the heck to the diaphragm, and as, for this extent, the opposite lange embrace them with free sliding serous surfaces intervening, so all parts of that apparatus become equally and synchronously influenced by the dilative thaction of the lungs. From this evidence of the heart being systobie of its omis act, and diastolic by that of the pulmonary "pparatus, 1 turn to examine the mutuality of both as circuluting organs, and 1 find this to be such as supports the present views in all resprects.
The two lungs are (during life) always in a state of distension, from residual air oceupying their vesicles cyen ufter extreme expiration. In this stute their distension is comstemtly of about two thinds of what they are capable in fill inspiration. Betareen the extreme limits of thoracic motion, therefore, the distension of the lungs varies only like plus and mimus from that in whicls they permanently exist to that which they assnme in full degrec. Thus, as inspiration and copiration, in respect to the lungs, express not the varintion between absolute repletion and nbsolute cmptiness, but hetween the whole sum nnd the lesser, so may those oryans be considered as cxercisiug a constant tration from the cardiae centre laterally, which is but increased on complete inspiration. Hence is it that in all states of the thoracic parietes, the opposite luugs cleave to those parts with equal temacity, and herce also the endurance of their centrifugal tendency, whether the thorax be passive or active. The cemous cumsn, gives indication of its being governed by this motion, communcated frou the thome to the heart throngh the nedium of the lings. The ronstunt truttion of the lungs explains the pernanence of the venous current; their inspiratary traction its increased ropidity; and their erpinatmy retrocession the renous requagitution or pulation. In this enduring tendency of the luugs from the thoracie centre we recogmise a force ever acting to promote the diastole of the heart; and in the systole of this organ we recognise a force intermittently eounteracting the other: While the lungs diverges oud, through the intervention of the pericardium in collapse, net umon the leart laterally, this organ being in repose, they dilate its covitics, and threaten them with vacuum, bot instantaneonsly with the motiou the blood enters them, and the advance of it here is the return of it from all the semons system, even to their mationate radiclesthe capillaries. The diustulie indiacy then being rendered (lyy the more or luss constnutly expanded lumgs,) pernaranem, thongh never of such strengrth ns to hinder the bearts cyystale at the mounent this is required, we see how both motions may necur in 1hythmical succession without the thoracic
motions timing with them, for between a force (the diastolic) which cat be assumed as ever in cyercise, by means of the lungs, and an opposing force (the systolic), which, by the heart's onn action, is in operation only interruptedly, I maistain that an agreement must manifest itself in respect to the object of hoth-namely, the circulating blood. The want of correspondence, therefore, which appears in the relative frequency, at any time, of the respiratory and the cardiae motions, camnot he an ohjeetion to the present theory, which assigns to the lungs and the heart cqual parts in maintainaing the circulation; for no sooner is the heart rilarect in repose, as it is in the interval between its systolic actions, than the lungs, perpetually manifesting centrifugal force, convert the relaxation of the heart into the dinstolic state, and, thereby threatening vacuum in its envities, cruse a movement of the blood to occrepy the void. If now we will revert once more to the consideration of the uain anatomical fact upon which I found, and according to which I would lead, the foregoing observations to their purpose-the fact, namely, of a durlex heart in a pericardium, and located sentrally within a duplex: respivalory apparatus, we shall see how the circulation of the hlood cannot he effected, unless by the combired action of both, and how the actions of the two correlate for this result.
As the right heart has the right lung apphed to it, and the left leart the left lung; aud as the heart, as a whole duplex organ, stands miduay between the two lungs, and must thereforc be influenced hy these in all its parts at the one time, we should expect the diastole of all the heart's cavities to oecur tagether at that time; and if this be the case, so may it he inferred that the systole of those cavities subsequently take place together in like manner. In this simple order I can, of my own observation, assert that the motions of the heart actually happen. On viewing the heart as it moves in the open thorax of an animal not yet dead, I notice that, after the systole of the auricles, that of the ventricles succeeds so instantaneously, as to make both motions ahnost one in time, and the four parts almost one in act. After their action, the four parts of whieh the heart is formed lie in passive relaration; and as this is the state which is necessnry to diastole, it must be then that the latter phenomenon occurs in the living body; and (hecause there is no anatomical condition to hinder it,) the four cavities may then be replenished at the same period. While the auricles and ventricles are passive, and are being dilated together ${ }_{1}$ the auriculo-venticular valves are relaxed, and the carities of both parts are :like accessible to the blood. When the auricles are replete they contract, and complete the measure of the ventricles, and these, then, with a quickness leaving no interval, perform their systole, and hy that very motion on their contents, close the auricular valoes and part the arterial, when the blood issnes from them now together into the lungs hy the pulmonary axtery, and through the hody generally hy the aorta, the heart receiving, immediately after its action, the ever-returning currents of the pulmonary and systemic veins. Thus, then, with a pubmonary rection in constancy effecting the beart's diastole as to all its parts at one period, and with a cartiac action intermittingly effecting the heart's systole, is illustrated the reciprocity of the thorax and the heart as agents for the circulation of the blood by inductive and propulsive forces. And as capable of enlinking those agents to this effect, I have described the pericardium, and assigned to it a purpose which it appears to me is is real as it is new to anatomical science. *
In death, as in life, the phenomena give evidence that the circulation of the blood depends no less upon thoracic than upon cardiac action: a gasp is the first requirement of the new-bom-a succession of then is respiration, and this marks its life thronghout-a gasp is its last dying act. By n gasp the heart is reliered of its oppression; and after death it is found, as a consequence of the last inspiration (which causes cardiac diastole), that the venous system, with the compartments of the right heart, are gorged-the heart itsclf having ceased its systole, and severed
the bond of partnership.

[^2][^3]Hou 1

COMMENTARY ON PLATES XVII. \& XVIII.

ANEURISM OF THE CAROTID, SUBCLAVIAN, AXILLARY, AND BRACHIAL ARTERIES. JUGULAR AND BRACHLAL ANEURISMAL VARIX. THEIR CAUSES, FORM, EFFECTS ${ }_{1}$ SYMPTOMS, AND TREATMENT EXPLAINED ACCORDING TO THE CIRCULATING FORCES.

If we consider aneurisms of arteries and varicosities of veins in reference to the forces of the enrdiae-arterial and thoracic-venous double eireulatory apparatus, we shall find those diseases to illustrate those forces in every particular. An artery is the only vessel which ean be affected with meurism, because that vessel alone receives the impulse of the left ventricle of the heart throngh the mediun of the blood ${ }_{\mathrm{i}}$ and, when once its eoats yield, its form is the indication, and its progressive increase is the cffect, of the repetition of that impulse. A vein, although being similar in strueture to an ortery, and for that reason equally prone to the sane kind of degeneration of tissue, is nevertheless not subject to aneurismal dilatation, and therefore the cause of the vein's immmity from the disease is to be attributed to the cireumstance of this vessel being removed from the influence of the heart's action. But when a primeipal artery opens a direct communication with a prineipal vein, the latter ressel then becomes at once dilated in aneurismal form $;$ and thns in the pathological condition nature herself indieates plainly enough the distinction between the cardiae impulsive and the thoraeic inductive forees. For assuming the venous current to be dependent upon the heart's nction through the arterial system, how can that action promote that current, when, instead of operating through the eapillary field, its foree, n in the ease now instanced, is diverted throngb the hiatus of the artery into the vein, and in the latter vessel opposes a current nevertheless still existing?
When veins having no communication with the arterial system, except by the eapilary channels, suffer dilatation, the cuuse of that state appears very different from that which induces aneurism. No part of an artery becomes ancurismal, notwithstanding its tunics may be diseased, if between it and the left ventricle the main chanmel be obstrueted even partially; and when the aneurism already exists, the obstruction promotes its cure hy arresting the beart's action on it. This proves as well that the heart's inordinate force is the prime cause of the disease, as that the arterial current from the leart outwards is due to the ventricular systole of that organ, On the contrary no part of a vein ean become varicose unless between it and the thorax the impecliment to its eurrent occurs, and the persistence of this impediment estrblishes the disease. This fact, in connexion witb those already addueed ${ }_{1}$ proves not only that the course of the venous blood is from the periphery of the hody to the beart, but that to the action of that organ the varicosity is in nowise direetly due; but those facts do not at all militate against the
present doctrine , which assigns the venous circulntion mainly to thoracic induetion. The vein then being thus naterally isolated from cardiae action, and accidentally from fill thoracic iufluence, we must attribute its varieose state to some other enuse. The form of the varicosity indicates this cause; and so likewise docs the situation of those veins which are generally the suljeets of it. The veins of the lowere extremities and those of the pendent testicles, are of all others the most liable to the varicose state; and the form whieh that state presents expresses the passive fill of the blood in oledience to the now dominant force of gravitation.

In marked contrast with the form assmmed by the varicose vein, we find that of meurism of an artery. The latter, wherever situated ${ }_{1}$ exhilits features explicalle according to the ventricular systole alone; and this is further illustrated in the greater frequency of memrisin of the aorta than of the pulnonary artery. In no one instance (as far as I bave ascertained) has the pulmouary artery been primarily the subject of ancurism; and this is the more remarkable, secing as we do that betwcen that vessel and the aorta there is not the slightest difference as to structure in their normal stite, and hence that no reason ean be assigned why the one should he degenerate in tissue oftener than the other. On eomparing the two ventricles, however, we see the right to he much less powerful than the left; and when we add to this the natural difference in the form of both vessels, and the difference as to the structure and situation of the parts in which they ramify, the cause of the pulmonary artery being so exempt from the disease must attach to those circumstances. With regard to the nortie system of arteries, agnin, experience shows that as a general rule, the nearer to and the farther from the Ieft ventricle the urtery is, the more frequently in the former place, and the vess so in the linter is it liable to become the suljeet of aneurism. As all the aortie arteries are the same in strueture, and equally prone to the same kind of degeneration of tissue, we must t_{1} on failing to find in this a cuuse why the disense sbould occur in one place oftener than in another, assign that circumstance to the varying foree of ventricular action. We do not find the arteries of the hands or feet at all prone to aueurism; for they are remotest from the heart ; whereas, thoracie nnewwisms of the aorta so near the heart are very common. But while to the proximity of the aorta to the left ventriele may thus reasonally be assigned the frequency of thoracie aulurism, this fact ${ }_{1}$ it would appear is in no small degree attributable ilso to the form of that vessel itself. In man the arch of the yortal is more marked than in the Iower animals, and this may per-

FIGURES OF PLATE XVII.

Fioure I - $A \mathrm{~A}$ nneurisul of very largo siza, $\mathrm{D} D$, is dilated from tho inner sido of the
 side. The vagus nurve, I, and internal jugular vein, E, ures strecthed over the outer side of the tumour. The walls of the anourisun cannet he suid in this cast, or those repressutel in figures 2 nud 5 , to be formed of so scanll a purt of tho pessel ns that now deserited by the dinmensions of the nucurismal opening, d, nud thercfore they mist have becu fermed hy the faseoin and cellulur substauce.
Fiocue II.-An aneurisu, D D, springs from the fire part of the lefe exteryal cancotid, J, mad diaplaces tho tougue, A, and largux to the right sida. A bougie, $d_{\text {, marks the }}$ алеurisunl epening.
Ftours III, -The upper purt of the right common carrotid, \bar{T}, is dilated umiformly into A rounded nucurina, D , whinh comprosses the jugular vein, E , and
Fraver IV.-An aueurismal vnrix, D D, is forned between the right jugular vein, E nude the right commou carotid artery, F. A simull bougie, $d^{0 /}$ is, passed into thu chamel of communication.
Fracun: V.-The right common carotid artory, F, at its bifiration, F* J, forms a large

Waso of the skull. The langne and pharyure are comprescel to the lef sido; tho sterau-

 carotid artery might mumirst inton, aud opened lyy him bohind tho stemo-wnetwid muselo originally by
at the point d:

at the point d:

Floome V - - An aneurisa, \mathbf{D}, is formed by difatation of will the conta of the rig internal carotill artery, F^{*}, und piojects forwnuls betweut tho lower jaw and congue.
Fravie VII-An anourism, D , of tha mout of the right internul carotid, F^{*}, is its firms staga.
Fuwne FIII,- dn aneurisn, D , of the upper port of the luf
secoud stage, and pryjecting formanis suile of the laryux, 10, Frounc ix-An
of the apheueid buys.
Flavis X
haps explain the rarity of the disease in the latter. The erect posture necessitates the pendent position of the human heart, and consequeutly the abrupt curve of the aorta. This form of the vessel (tbough certainly ander the circumstances the most fitting) is not the most favourable to the free passage of the blood from the veutricle. At every systole of the ventricle the hlood jetted from it in a direct collumn, tends to straighten the aortic curve, and failing in this, reacts on the heart itself and lifts it from its sent. The apex of the heart tells this motion in succession against the left side of the thorax, and the pulsation may be regarded as a misus of the organ to overcome the certain amount of impediment which the curve of the norta occasions to the blood passing through it.

The passage of the blood through the aorta is ohedient to the same laws of motion which govern the transmission of currents through other tubes of similar form and propertics, and under sirailar circunstances. While fluid is impelled, in wacuo, through a tube whose outer surface is removed from atmospheric pressure, (as the aorta is during both states of the thorax, and especially thant of inspiration, the momentom of the current is nlways in the ratio of the caliber of the tube and of the proximity to the prime morer: This obtains when the tube is stroight and of equal caliber throughout. But if the tube be atruptly curved in any part, the moncutum of a current passiug through it will he abated still more by the curve; for as fluid, like other bodies acted upon hy a single impulse, inoves in a divect line from the actor, the first partion of the curve which opposes it, and causes it to assume a new direction, must occasion an expenditure of force according to the degree of the curve; and therefore the force of the current is weakened beyond such point. Applying this to the aorta, we can miderstand why the autcrior curve of its arch baving first to sustain, to curb the momentum, and to alter the course of, the blood inpelled through it by ventricular systole, should oftener become ancurismal than the posterior ruber, which is more distant and receives a chrrent of weeakened impetus. Thoughi hoth paris be equally disorganized, tis the forepart which neesssarily will first yield.
The normal form of the aortic arch is itself expressive of the manner in which ventricular action affects it. The forepart represents a simus, ardently to receive the mensure of blood jetted into it, and momentarily hindered from its divert onward course by the cmrve. 'The sinus, therefore, wily tec considered as the uatural result of distending force; and, as uch, we find it inore or less conspicuous, according to the state of the rentricle which affects it. If the rentricle he hypertroplied, so as to merease its power and capacity, the rortic simes becomes proportionately enlarged. When, as in infomey, the ventricle is relatively small and weak, the sinus is then scancely distinguishable from the other parts of the arch. In artult age the sinus is indiative of the force of the heart, and this of the development of the muscular parts in general. In old age we find the sinns ordinarily very capacious; but this feature, and the tortnosity of the vascular system throughout, appear more justly ascribable to the romil relaration which affects all tissues of the hody at this period, than to inordinate carliac action. In fact, while a true anewrisu is defined ns a thlutation of all the arterial tunics, the aortic simus, as being the effect of distension, may be considered naturally aneurismul; aud, except in extreme cases, it is difficult to pronounce which is the ahmomal and which the nomal condition. An abrupt poueding of the aortic auch is an irregularity at once pronomengeg its true character; but the "muifom dilatation" heiug natural in some degree, the excess, within certain limite, und provided the conts of the vessel be unaltered, and the semilmar valves capable of just clonure, may exist, and no mintoward eflect he manifested.

The primary branches must serve in no small degree to modity the force of the current of blood passing through the nortic arch. In the number, form, and position of those vessels, there appears to rae to be a maked design for effeeting that special object. They spring from the summet of the arch where the centrifigal force of the curvent is strongest, and while as rents for the blood they obviate the inordinate distension to which this part (were they absent) would he subjected, they cin here receive and convey the quickest of the blood to the brain, and maintain the circulation in that organ the more effectually against the force of gravitation which operates on all the fluids of the body, vascular as well as visceral. In their scrial orter and respective size, this design is further indicated. The innominate, the hryest branch of the three, is generally the first to arise, and as it corresponds with the point where the arch receives the heart's finl inpulse, it prevents that foree trking effect on the aortic tunies, in proportion to the quantity of hlood to which it gives direct passage. Next in order, the left carotid and subclavian brancles arise thistinetly firm the arch; and this also expresses its meaning, for the ventricular foree being in a great measure expended on the large innominate, and the momentum of the current becoming in conseguence weakened
beyond the origin of that hranch, the two others, which are respectively of smaller caliber, give to their currents velocity in lieu of momentum, and thus equalize the difference in respect to the hrain. This change from momentum to velocity occurs also to the aortic current, where the norta, after giving off those branches, is itself diminished in caliber. Sucb is the law governing the transit of a fluid through a tube, whose caliber is greater ncarest the motor power than it is at a more distant part. And as the entire arterial system shows every hranch of it to he of this form, so those branches, collectively and individually, are in the same way influenced by that law. By branching, the aorta diminisbes in caliber, and each branch of it, in like marner, diminishes by sub-division. The force of the current is in consequence divided and sul-divided, according to the numher of the branches. But though in this way tbe momentum of the current hecomes more and more diffused in proportion to the incrensing number of the suh-divisions of those vessels, the velocity of the current in each is maintained by reason of the narrowing of each, until its individuality hecomes lost in the capillary field, where momeutum is so reduced as to be scarcely appreciable, and where, consequently, velocity is at its minimum rate. Hence as it is hy the momentam of the blood (not by its velocity) that aneurisms are dilated, we can discem (in the form of the arterial system, which effects in this manner a change in the force of the circulation in the ratio of the divergence of tbat force from the centre to the periphery,) tbe reason why aneurisms are more frequently occurring in the parts proximate to the heart, which is the only agent propulsive of the arterial blood. The disease is the most frequent in the ascending part of the aortic arch; less so in the descending part; still less so in the branches; and lenst frequent of all in the sub-ctivisions of those branches, and according as these multiply the currents. In this computation may be included individuals of all ages and both sexes, although it he true that those of different ages and sexes are in different degrees bable to the disease.

When the summit of the aortic arch is aneurismal, the origins of the primary branches are generally more or less involved; and when either. of these is the seat of the disease, it for the most part occasions some deformity to the aortn. In either case, very nearly the same cffects, as consequent on the pressure of neighbouring parts, are produced. Like the aorta from which the hranches spring, they are more or less subject to nneurism, according to their proximity to the heart. Thus the immominate artery is oftener dilated, and attains a much larger size than the left carotid, and this then the left subclavian,
Aneurisms assume various forms, according to the manner in which the arterinl coats yield. They are also distinguished into several kinds. In sbape they are uniform, saceulated, and pouched. In kind they are true, when the arterial tunics invest them; false, when hy a wound or rupture of the arterial coats, the hlood becoming extravasated into the cellular tissue, forms of this a receptacle; and dissecting, when by a rupture of the inner coat of the vessel, the hlood passes hetween this and the onter coats. In noticing those varieties, however, the object is only to show of how very little practical importance the pathological fact may sometines be. And as to the question, whether aneurism occurs at first by a change of structure, hy a weakening, by a rupture, or by a dilatation of one or of the arterial coats, what shall solve it if it he not the fact that it may occur hy either circumstance. But of what ever kind the tunics of the aneurism are in its first stage, there cannot he a doult that in its last stage, the structure of these is not only not identical with that of the artery, but has never been part of the vessel; for of every part with which the tumour has eome in contact, it forms for itself a new investment, and outgrows the original. Of this, aortic nneurism, arising within the pericardium, and protruding subcutaneously on either side of the sternum, is an example, and illustrates the whole. The form of the aneurism determines not only the shape and quantity of the coagulum within it, but also the speed with which this is deposited. If the caliher of the vessel wideu uniformly, such will the the shape of the aneurism, and in this \& coagulum is less likely to be formed soon; for as the aneurism is the direct channel from the heart, the blood sweeps through it freely. But if a part of the artery yield on either side, so as to be out of the direct line of impulsion, the spot forced becomes the narrow mouth of the aneurism subsequently formed, and the latter, acting as a diverticulum for the hlood, (as a lake receiving and not transmitting, either deposits a coagulum and gradually obstructs further entry, or widens its boundary to receive additions, or hursts a vent for them

The effects of aneurisin which call for notice in a work of this kind, are those which nrise from pressure on ncighhouring parts. In whatever place an aneurism arises, it is sure to conse a double impediment to the circulation of the blood, a tergo through the artery, and ad

frontem through the accompanying vein; and in this way it affects the parts ol the body on all sides of it. The artery while dilated does not possess those physical properties which it had when of its natural proportions, and whichare so essential to the free trausmission of the blood. The deformity of the vessel occasions a diversion of the blood from its direct course; scatters the force of the heart's impulse on the blood ${ }_{i}$ and henee on the distal side of the aneurisin the current in the vessel is weakened botl in momentum aud in velocity. According as the increasing aueurism obstructs the direct circulation tirrough the main artery, the branches anastomosing above and below ${ }_{1}$ gradually increase in size ${ }_{1}$ for establishing the collateral circulation, and when those brauches become themselves involved in the disease, the limb perishes. The accompanying vein suffers pressure from the aneurism almost from its first stage. This is an effeet which more especially results in the thoracic, cervical and axillary regions, where bones, muscles, and dense fascix, \&c..1 resist for : long time the expansion of the tumour, and thereby turn the pressure of it back on the vessels themselves. In all places, too, wher aneurisms are formed, large and important nerves are situated, and sufter either by pressure or by being stretched. In cases of thoracic ancurism affecting the arch of the norta or the root of either of the primary branches, not only are the functions of circulation and innervation liable to be impeded, but likewise those of respiration deglutition, and nutrition. There is scarcely a point of the aortic arch from which an ancurism originates, but by its pressure it involves some vitally important part, not excepting the heart itself.

The symptoms of all aneurisms are in themselves sinuilar, but they are liable to be masked by various circumstances. Upon this the difficulty of diagnosis altogether depends. If we except the differences of structure according to which aneurisms are named, and which are in no way uecessary to inform us of the existence of the disease ${ }_{1}$ or its distinetion from other affections, and which, moreover, are of no moment in respect to its cure, then we reduce nomenclature to mere essentials and name the disease according to its place. It is, indeed, from our knowledge of a place being frequently the seat of nueurism, that when other signs are not very marked ${ }_{1}$ we are at first led to the true character of the disease when existing ; and many a serions error of judgment wond not have been conmitted even by the most distinguished surgeons if this knowledge were allowed its due weight in diagnosis. As all arterics in their normal condition are similar in form and structure, and are more or less subject to the heart's action, so in disease they manifest the influence of that action in the same way. The pulsation, and the peculiar mumur which attend all aneurisms, are syncluronous with the systole of the left ventricle, and both those signs are occasioned by the entry of the blood into the interior of the tumour. Those symptoms are peculiar to ancurism. They do not attend on any tomn of varicose veins, for the heart's impulse does not reach them throngh the cupillaries, Whenever tbose symptoms are ohscured, this cannot be owing to the form of the ancurism per se, but to the existence of structures (healthy or otherwise) $^{\text {p }}$ whieh surround it; and ${ }_{1}$ as in the case of thoracic aneurism, to the sounds and motions of the disease being lost in those of the heart and lungs. The ehief sources of fallacy in the diagnosis of anemrism in the neck or upper limbs from swellings which simulate it are these: 1st. Any tumour may assume the aneurismal form. 2nd. Any solid tumour
situated in comexion with an artery may have a pulsation commuicared to it from that vessel. 3rd. By compressing a main urtery on the proximal side of a tumour which has a motion from the vessel, we arrest that motion whether the tumour be anenrismal or not. the. A tumour may be an ancurism containing a large solid coagulum, and thus nasintain its volume ${ }_{1}$ even though we exert pressure on itself or the artery leading to it. 5tb. A tumour nay not be of the ancurismal kind and yet yield and lessen in colmme when compressed, as for example an alscess bulging on the superficies, and leading from sinuses deeply situated. When, however, with those doultfin signs the positive oncs are present and obvious, the former scrve to make assurance doubly sure. If a vein or the sac of an abscess form a comaunieution witb the canal of an artery the case is to be included in the caterory of ancurisms and treated aecordingly.
On considering aneurisn in reference to the heart's action and to the reneral form of the aortic system, the following idens occur to me as having a very material bearing on the operative treatment of that discase. 1st. The part at which an artery is aneurismal would scem to prove that the vessel on the proximal side of the tumour is in a bealthy condition, for were it not so, it must have yielded nearer to the heart than it has done; and therefore we need not fear an unsafe hold for the ligature, owing to any discise in the conts of the vessel above the tumour. 2nd. As the aneurisin abates the heart's force, in respect to the distal part of the artery, this part canmot suffer dilatation, even though it be degenerated in tissuc ${ }_{\mathrm{i}}$ and therefore the proper site for the ligature is, in all cases which admit of it abore the ancurism, where we may presmane the vessel is healihy. 3rd. As the form in which the aortic system ramifies, moderates the heart's force, from the centre to the periphery, so the development of anemrisms must lave a certain order as to the time and place of their appearance. If, for example, the same artery be affected with two or more aneurisms, that one which is most distant from the heart must, 1 maintain, have leen the first to appear, for the nneurisn once existing, prevents the heart's action taking effect beyond it ${ }_{i}$ whereas the ressel on its proximal side is stall in the same condition in regard to the hart's action, and consequently is yet liable to be forced on subsequent weakcining of its tunics; such is the order in time. The order in place is a consequence of the heart's action affecting more directly the arteries of the right side of the body than those of the left, owing to the curve of the aortic arch being from right to left, and also to the form of the primary branches. It is known that the inuominate and its brauches are more sulject to aneurism than the branches of the left side. 4th. When tbe ancurism affects the ascending norta first, none of the branches of that vessel are in the sceond instance subjected to the disease, or can be because of the tumour weakening the hreart's impulse on the blood at its source. The same happens in respect to the brancbes of the imominate artery when that vessel is first the subject of aneurism. But if cither the right common carotid or subelavian become aneurismal, the disease affecting the one distinct vessel cannot abate the heart's circulating force in respect to the other, and so the unaffected one is liable still to becone aneurismal in any part of it, even at points more remote from the heart than the aneurism of the vessel first affected, and ut periods secondary in time. 5th. Arteries of the first class, such as the innominnte and common iliac; of the

figures of plate ivili.

Fhaure I.-The neurism. L L. springs fronn tho right aubelavian artery, F, insilo the auterior scalemus muscle, I , which1 is bent outwards hy the tumour. The internal juggulur vein, DD, the cxtermal jugular veia, T, the ragus nurve, tho clavieular. part of the sthorne ranstoid, the oniolyoid muacle, M_{1} and the brancless of tho subclavian altery, are hiorne forvards. The nueurism reaches tho portrior inforior ecrvieat ternagles whieroitu it tho the braclinal plexus of nerves, K, and lience might well bo mistakey us oniginatiug in tho artery, F^{*}, at this situation.

Fioure LI-The anomism, \mathbf{L}, is represunted by na uniform whatation of the right subdhavian antery, \mathbf{F}^{*}, ontside the auterior scollewis mursco, I. Thie omolyoid, MI, and the tmansversalis colli artery, together with the external jugular and nuother vein, lie in front of the nucurism, the subelarian rein, J , is below it, and the lunclial plexus is belind it, La a chee of whiol I have a skotech very similar to this, Mr. Liston tied the origins of the subechvina and carotid arteries, and denth cusued fronn secondary hreworringe The peste mortam examination slowed tho veins distended from pressure- tho auterior juguar cutcongulum abovo and helow tho lignture of the carotid-tho saneciarimate spanited from tho tare, which adhered to tho proximat euti of that (whid werv ull of thew outside the ligature nund open-the branches of the subelavian (which wetv ull of tuews outide ligativer) were pervions.
Froune III.-Represonis the stato of the parts as they atpeared some ycars after the curve of an aucurism, $\mathbf{L} \mathbf{L}$, of the right sulbelarian netery, F^{*}, outside the scancuan The trueliul plexus of nerves, $\mathbf{K} \mathrm{K}$, applears erabedded in the anoun
 Thanel hy the nxillary plexus of surves, and it comproses the vein os its inner eide embracel by the nzillary y pexts of be
Fiectue \bar{V} - - A large glabular anourism, $\mathrm{L} L \mathrm{~L}$, of the right axillary artery, F , nipeonn
 it on its inner side as to be impervious, J°. Below the twnour the tasilie rein, (f , is macin mact disstuded. The cephulie vein, F , is of its en
A, is nabercent to the naterior wall of the tumeur.
Figure V1.- Represento a "dissecting" ameurism, B^{5}, of the right himechind artery, A . Figure V.- Represente a misact aud nidule cerits of the sescel. At the basilie vein C , the medina acerve.
Frovke M11-A suall nueurism, A, uppears ou the ridial netery, B , at the wriat
Frovir VIII. - Au aneurisnal varix, A A, iuvolves the truebiul artert, I, nad median
 busicio I , C . The

 rlich did unt diractly commemiesto with tho vein, wus tiel, hut of culrse withont the deairad dllect.
second class, such is the suleclavian, eommon earotid, cexternal and internal iliue; of the thive clase, such ns the brachial and superficial femoral; and of the fennth class, such as the radial and ulnar, the posterior tibind nal peroneal are in that orter as to caliber, the sutjects of aneurism is to frequency. This is explicable by the circumstance that the farther the vessel is from the henrt, the smaller is its culiter, and the less the momentum of the current to which it gives passagut.
As all aneurisms, and especially those of arteries near the heart, are destined to merease in size, and as the spontaneous cure is a very mare exception to their progressive growth atad fatal issue, it can aumit. of no argument, considering these circumstances alone, that the sooner the most: snitable form of operation is undertaken to control the disease, the lotter the chance of attaining that result. There are, however, cogent reasous for urresting the fitt development of the disease ns soon ns its existence is known: of those reasons the primepal are these, viz., the greater the dinensions of the tumon the more likely is it to involve the crigins of the collateral luranclies, and render it impossible for them to carry on the anastomotic circnlation. When those branches are destroyed, and the mnin artery is tied, the limb then has mo more chance of maintaining its vitality than if it were amputated. The larger the memismal fumom, the more it shortens that interval of the vessel to Which a ligature is to be applied. 'The larger the aneurism, the more it distorts from their natural relative position the artery nad the adjaeent $\mathrm{p}^{\mathrm{n} r \mathrm{t}}$, thereby rendering it difticult to find the course of the vessel in an operation. The only renson that enn be assigned for delnging operative mensures, is in order to give time fir the foll estrblishment of the evilateral circulation, by direeting gradually to the branches the beart's action which has been impeded by the disease on the main arterial chnmel, hut this is a result mucb more often firustrated than realized by these very memis.
Ancurism of the innoninate artery, PI. XV1., admits in no instance of the application of a ligature to that vessel itself. The shortness of the artery, its large size, its contiguity to the aorta and the plenral sae, its inacersaible position within the thorix; and the fact that the dilatation, even at an early period, involves the whole length of the yessel, are eircunstances forbidding the operation. The sane anatomical facts render deligation of this vessel inadmissilite for an ancurism of one of its lranches nenr its lifurcation. The indication, therefore, for the trentment of such cases is (as in that of nomic nucurism) to lessen the quantity of the eirculating blood, and to abate the herert's action, or to try the ellect of tying one or both of the braneles of the inwominate artery on the Ilistal side of the tumour. When the iunominate is olstructed by an aneurism of itself, or when the laranches are tied at their roots for an ancurism of the common trunk, the collateral circulation in respect to the distal purts cou only be carried on by such branehes of the vessels of cither side as annstomose neross the inedian line of the buty, viz., the offsets of the two internal mammary aeross the stermm, nad luterally with the superior intercostal and thoracic brancles of the uxillary; the superior and intirior thyroids of opposite sides in the thyroid body; the two facial and supru-orhital, se, neross the middle line of the fice and forchead; the two vertebral in the basilur artery, and the tranches of this joinuag those of the intermal enrotid within the crammo. The right innominate vein is that which suffers direct pressure from this menrisul, and the eonsequence is congestion of the reins of the right side of the head nad those of the right arm. The nerves which are sulpiceted to compressini are the right vagns, phrenic, and sympathetie; and lannee the effect on the larynx, cesophayus, lungi, heart, stomach, and iliaphrarn.
Ancarism of the right common carotif artom, Figures I, 3, 5, and 8, PI. XV11., is circumstunced mueli less fivourably for at cure ly deligation than the eorresponding vessel of the Ifft side, und for these reasons, riz., it is more directly exposed to the action of the rentricle, and it is shenter ly the tength of the innominate urtery. The higher up and the suatter a common curotid meurism is, the more readily and cffectually it whints of the wesect being tied velow it. Whend this artery is tied,
the collateral circulation in maintained in reppect to the hed and the eoslateral cirenhation is mainumed in respeet to the head and neck, lyy the opposite thyroid, faciul, lingual, temporal, pbaryngeal, internal carotill, and wertehral, auross the median line. The vagus nerve, and the inturnal unkl external jugular veins, (particularly the former vessel,)
are sutyjeeted to cumpression. are suljeeted to compression.
Ancirism of the wirtomal carotid artery, Figure 2, iuvolves the whole
engeth of that vesset, and therefore
 clitions, and denamls the sume operation as is required for aneurism of the "ppxe phrt of the common carotid. The anenrism if large, wilt interlin' witla itughtition and sprech, ly preventing the motions of the
lower jnw, larynx, pharynx, and cesophagus, and by pressure on the lingual and laryngeal nerves.
Anearism of the interaal carotid artery, Figure 6, will, if small, and situated on its upper part, admit of the vessel being tied below it, for ${ }^{\circ}$ the internal earotid is, opposite the thyro-hyoid interval, on the same plane with the common and external carotid. But if the aneurism spring from its lower third, Figure 7, it becomes neeessary to tie the common carotid at its upper part. Wheu the internal earotid within the cranium, Figure 9, is ancurismal, there is, during life, no sign by which to distinguish it from any other tumour. And if there were, it may be doubted whether deliga. tion of the vessel iu the neck would result in any otber benefit tban arresting for a slort time the increase of the aneurism. The direct eommunieation (circle of Willis) between the basilar artery and the internal carotid within the head, would maintain the entry of blood into the ancurism.

Aacurisual variv of the common carotid artery and internal jugular rein, Figure 4 , requires deligation of the former vessel below the tumour, ns in the case of aneurism. Since it is the direct force of the arterial current opposing that of the venous eurrent which canses the vein to dilate, it would seem, ì priori, to be sufficient and admissible to tie the artery immedintely helow the opening, for the disease is not owing to a degencration of the conts of the latter vessel.

Ancurism of the right subclavian artery, Pl. XVIII., Fignre 1, within the scalcnus, would, even if smill and close to that muscle, seareely allow of a ligature heing plaeed arond the proximal end of the vessel; for the lignture here must necessarily be cither close to the root of the common carotid, or among the origins of the numerous branches arising from the subelnvian itself, and in contact with the plemra, the vagus nerve, and internal jugular vein. To those facts is to be ascrihed the very unfrequent successful result. of this operation; and the experiment of tying at the same time the lower end of the carotid or the innominate itself, has been followed by no more favourable issuc. For an aneurism close to the outer side of the scalenus, fig. 2, the most eligille site for a bgature would appear to be behind that muscle, but the difficulties attending this operation are scarcely less in number than tbose of the former. If the ligature be placed inside the subelavinn branehes, the collateral circulation in respeet to the arm can be maintained from but comparatively few sourees-riz., the opposite inferior thyroid and the intermal mammary branches communicating across the median bine; and (as is not unfrequently the case) if the inferior thyroid arise from the common carotid or the innominate, the anastonosis of this branch is then of no account. But if the ligature be sitnated external to the branches, then the anastomotic circulation for the support of the limb may be carried on by numerous clannels-via, by the inosculation of the superior intercostid and mammary with the axillary thoracic branches, and by that of the supra-scapular and tranversalis colli, and also, that of the posterior serpular, with those branches of the axillary-viz., coraco-acromial and subscapular, \&ce-which ramify about the sboulder bones. If the ancurisn be inside the sealenus, it will compress the internal and naterior jugular veins, and also the vngus and phrenic nerves. If it be outside the senlenus, it will prexs against the brachial plexus and the end of the external jugular vein; but the subclavian vein, occupying a lower level
then it, passes free. then it, passes free.

Aneuriam of the axillary artery, Figs. 4, 5, whether small or large, is so sirrounded by the brachial nervec, leaves so hittle space for a ligature,
and is so deeply situated, that there can be no doubt in any ense of the paramount neeessity of tying the vessel immediatcly above the clavicle, where those disndvantages are not so much in foree, and where, moreover, the number of anastomotic channels for effecting tbe circulation of the limb is (if not more) certainly not less than if the ligature be placed lower down in the axilla. In axillary ancurism the nervesare always stretehed, cousing pain, numbuess, or paralysis of the arm, while the pressure which olstrncts the axillary vein, and sometimes obliterates it, induces a varicose state of its formative brancles with odematous tumefaction of the menber.
Aneurism of the brachial artery, Figure G, determines the site at which the vessel is to be ligntured; but if a cloice may be made, the ligature should be applied below the profundi branches, and if not, the best situation in regard to anastomosis wonld (for reasons before mentioned) be cither in the axilla or above the clavicle.
Ancurisn of cither the radial or uhnar artery, Fig. 7, would only require a ligature on the proximinl side of the tumour, without regard to anastomotie branches, for the other arteries of the forearm freely communicatc in the linnd.
Aneurismal varix at the buad of the clbow, Figure 8, requires the brachial artery ut its lower third to be tied, and it may be also necessary to apply a ligature to the vessel, below the tumour.

COMMENTARY ON PLATES XIX. \& XX

the surgical dissection of tie parts describing the facial median line. symatity. cnity and dullity. species. monstrosity. signification of the intermaxillary bone and labiem leporinum. mechanism of the duplex cranio-facial apparatus. stricture of tie cesophagus.

Anongst the most remarkable, and yet the least understood, manifestations of animnl formation, are those referring to the median line of the body. They are creations as visihle, and tangible, and ponderous as canmon balls. We see then in the dissecting-room, in the bospital, in the museum, and in the fields of Nature in every direction; and, nevertheless, there are those who, thongh professing anatomy, live ns little inquisitive of their signification as they are of the "quadrature of the cirele." These are they, however, who would account not more interrogative thon Cheapside rubbish, the never-yet-touched vestal marine shell-bed strown on the empyrean untrodden peaks of suow-eapped Himalaya, or entomhed deep as Hades in Palreozoic rocks! Not less significant of some unknown meaning than this, appears to me the facial deformity familiarly named "hare-lip;" and as a surgical subject, I think it demands our inquiry into its origin and development as muelt as an aneurism or a hernia. What I have to say of it I shall put, for brevity, in the propositional form.

Every organic form is symmetrical. -Througbout all variety of special forms, whetber normal or abnormal, it is noticeable that not only does the order of the graduated series, $9,8,7,6,5,4,3,2,1$, relate them to one another, but that the condition of symmetry elaracterizes them in common; and this so absolutely, that just as each one is clenvable through its longitudinal axis into two equals, so by an extension of that line throngh all those forms (supposing them to be arrauged in linear series) it would be found not to swerve in the least degree from a right line from one end of the animal kingdom to the other, and thence may be produced from end to end of the vegetahle kingdom likewise. This haw of symmetry distinguishes the orgauic from the inorganic forms.

Every organic form is symmetrical by the union of thoo individuals. The form, when considered in regard to symmetry, will be found to be fashioned of two figures, respeetively complete, and similar, and equal to each other. In order to see the distinctiveness of the right from the left form by the exact junction of which the body results, it beeomes necessary (as indeed it is for the appreciation of most great truths) to look from a point to some distance in time and space around. In the stages of development from the embrgotic to the adnlt, we trace through the persistence of symmetry a coalescence of lateral parts in different situations along the median line. Thus, as in the developmental phases of the individual, we recognise beings (distinct in time) transient the preceding one into the succeeding, so in the phases of coalescence of the right and left body, we mark two beings (distinet in space) beeoming, from the statc of duality, a symmetrical unity. The cranio-facial apparatus is an example of this. The feetal head is marked vertically into halves; and the plane of its division, instend of being merely ideal, is actually described by a septum which consists in itself of two lamine representing respeetively the junetion sides of the distinct right and left cranial forms. The interparietal suture is at an carly period produced backwards throngh the middle of the occipital bone, as the interocipital suture to the foramen magnum, wbich is a central hiathe, and forwards through the middie of the frontal bone, as the interfrontal suture to the fronto-nasal junction, whence it extends as the internasal, intermaarilary, and interpalatine sutures through the centre of the sphenoid bone to the foramen magnum. Betiveen the right and left cranial forms we find the septal lamins, or inner sides of the two, partly osseons and membranous. But this struetural difference is none as regards forn; and ns a proof, we find that parts of the septum, via, the fadx cordui and cerebell, which are
memliranous in one species, are osseous in another, and in the same way divide the cranial iuterior into two chanhers. The ficial apparatus is likewise marked double by a septum nasi, which is in the smine plane na that of the cranium, and, like this, consists of two layers. This duality which is thus plainly marked in the osseo-membranous forms of tha lead, is not less notieealule in regard to its contained organs; and, in fact, the condition of the one hespenks that of the other. The bmin is double. It is divided naturally into a right and left organ, and the junction sides of the two form its median septum, which is in the same plane as that of the eranium and face. The corpus callostm is marked by an antero-posterior central raphe representing the junction of the opposite cerelral hemispheres. Corresponding with this raphe is the septom cerebri, being also of two layers partly separated, ind standing perpendiculnrly hetween the middle line of the corpus callosum and that of the fornic. The formix, like the corpus callosum, presents a median raphe and covers the third ventriele, whieh is a srace or medisu interval hetween the optic and olfactory budies of ench lateral cerelvum. On the base of the brain, we trace the antero-posterior middle line of junction, also coinciding with that of the cramium above, and the face below. In like manner, the cerebellum is bilobed, and the medulla oblongrata is centrally furrowed. The cerebro-spinal nerves are in pairs on cither side of the middle line, the nerves of the right brain forming a series opposite that of the left. This natumal hipartition of the head and its organs is traceable throngh the hody and its organs likewise.

The primitire organic unity is devoid of a meliun septal plane, Fig. 1.In the primordial organism, the ealliest definite form which is ereated is the spheroid. This form is an example of simple symmetry; for in whichever direction it be eleft, provided this take effeet throngh its eentre, the resultant halves are similar to each other hoth in form and quantity: But the hemisphere, unlike the sphere, is an unperfect form, inasinuch as it does not enclose space. It is a form of mere surface, with its concavity corresponding to its conrexity. The ciremmference of the henisplbere is a circle, but the planc of section which has separated it from its opposite is not represented in substance. The simple spheroid is therefore incapable of division into two complete enclosing forms, because of the absence of a median septum. The lowest grade of organic being-the monad-is the representative of this simple sphere; but there is not to be found in any of the higber classes of animals, and especially not anongst the vertchrated, n single iustance of nonseptal formation. To prove that a median septum is the indication of duabty, and the alsolute distinctiveness of the right and left forms, we have but in farcy to cleave the head through its septal plane, and eontemplate either the right or left form separately. The septum then no longer exists in that eapacity. Instad of the eentral position which it occupied when the two forms were side hy side in union, it is now divided into two parts or surfaces, which respectively belong to each of the cranial forms, and is a side for each. In either form we now no longer view bilateral symmetry as marked hy a septum, and consequently that form is not naturally bipartite. No lateral organ of the body is symmetrical per se, for the opposite organ is necessary to this condition, and then it only appears in respect to the two side by side. Every azyfos organ is sym metrienl, as formed of similar sides joined; but the side itself is devoid of this character. When we view the lateral unit of the dunl head, it presents a single cranial chauber ocenpied by a single cerehral form: it has Jut one orbital cavity, onc nasal, half an oral cavity, and half a tongue

But when the head is considered in regard to hotly its lateral forms in apposition, the symmetrical duplicity, not only of it as n whole, bat of its contained organs aud its cavitics, manifesta itself. That duplicity is necessary to symmetrienl unity, and is the very essential menning of this character of form in the vertebrated elasses, is a question solvable in the most simple mode:-when with closed eyes 1 describe on half this paper an inky figure of the most bizarve form imaginable, and fold it against the mpposite half, the lateral figure, now impressed double and united, is remdarly symmetrical. And what form is there more deroid of symmetry than the lateral cephalic unit? No one of its points or curves is like another. In no line of division ean its resultant segments be made to resemble one another; and yet when plaeed in natural relation to its opposite unit, dissimilarity vanishes from the presence of symmetry, as darkness from light.
A inchion septuan con only result from the comptation of tho hollowo clastic spherce, Γ igs. 2, 5, $6,6^{*}$. - When within a given space two clastic spheroids are posited so that by tending to a common eentre, a a they compress each other, the two units so compressed represent a figure differently eonstituted from that of either appearing per se. Those sides of the two in contact form, in respect of the dual figure, a median septum with two plane layers, But though the primitive spherical form of each mit be now changed, $a b$, and no longer in hilateral symmetry, 5 ct it remains a complete form as enclosing space, and distinct from its opposite. The bilateral symmetry of the now donble form, $b c$, is that of duplicity in regard to a septum, a a at the middle line. The existence of this septum is therefore a proof of duality.

A nedian septum, being of two layers, must have four sides, Figs. 2, 5, $6,6^{*}$. This is self-evident; for as the spherical unit, 66 , fig. 2, has an inside and an outside, so when the two units, $b b, c c$, tend to each other, and their sides in contact form the median septum, a, a, of the now dual figure, that septimn must have four sides, two of which look towards each other centrally, and two from ench other laterally, into the interiors of the units with whose peripheries they are respectively continuons. The medinn and symmetrical cavitics of the body are merely the intervals betwen the septal layers. The fifth rentricle between the layers of the septum ecrebri formed beneath the eorpus callosum, the two lateral, the third and fourth ventricle, are the interspaees hetween the two cerebra, fust as the thorucie mediastinal spaces arc the intervals between the two plewral sics.

The ertent of a median scptuan is in the ratio of the cohering surfaces of the tee forms, Figs. 2, 5, $6,6^{*}$. - If the two units merely touch at a point, such will be the condition of the septum: if they tend together so much as to compress their adjacent sides, $a a$, fig. 2, to an extent equal to the vertieul dimmeter of each, snch will be the extent of the septum. Between those two extremes, all the degrecs of medinn tendency determine those of the superficies of the septum.

When the diameter of the spturu equals that of cither lateral unit, the dual firta is sphervicel, Figs. 3, 7, 7. -Each unit, $a f, a g$, fig. 8, being spherical, aud of equal diancter, and their tendency to a eommon centre, a, a, cansing a flat tening against each other, in suchwise that their respeetive centres, $c b$, meeta at a common centre, a a, then of course cach unit now representing a hemisplere, $d c e, d b e$, the two constitute a sphere, I $c e b, b y$ the coaptation of their plane median surfaecs, $d d, c e$. But though in outwurd appenrance the now duul form be spherieal, like the lateral unit in its primitive state, yet the former differs from the latter by the presance of a septum.
Three sopta indicate the coutesermere of four units, Figs. 3, 7, $7^{* 3}$.- When of three spherical forms the middle one, $c b$, fy. 3, is eompound or septal, d, and the two laterul, $a f, a y$, simple or nouseptal; and when
the two litepral tend to the septal centre, a, a, of the intermediata oue the two literal tend to the septal centre, $a a$, of the intermediate one, $b e$, the triplex form thus resulting must have three septa, of which one is that, $d e$, already existing in the middle figure, $c b$, and the
two others, those formed respectively by the cohering fletened outer two others, those formed respectively by the cohering flattened outer sides of the middle figure, and the adjaeent sides of the lateral ones. In the triplex septed form so constituted, it will be observed, that whide the lateral menbers are now rendered plano-conves, or hemispherieal in respect to the common centre, the middle one is rendered bilaterally plane or discoin, being compressed between the two outer ones, and occupying the interyal between them.
The internazillary and triquetral bones are the remains of a niddle septal betrecer tro nonseptal formes, Figs. 3, 7, 7^{*}. -This is explieable by the last proposition. Those bones, when existing, are invariably posited ht the cephalic median region, and are naturally bipartite and symwetrical. The intemaxillary bone, $e \in$, fig. 7 , is duplex by reason of a
contral suture, and on this suture the two-leyered septal yomer stands central suture, and on this suture the two-layered septal vomer stands.
letwecn the intermaxillary and maxillary bones of either side, a suture,
(1" u, ulso appears, ankl each of these should, according to the present views, bikewise support a septum, (making three,) and would be found to do so, (fig. 6,) were it not that the eases which lave hitherto come under notice (fig. 7,) are those in which the centrulizing fusion of the lateral cephalic units has, in respect to the nasal compartment, proceeded so far as to render this double from having been quadruple. The ossa triquetra appear at the fontrnclles, still scparate from cach other at the eentral line, and from the other bones externally. In the lower aninals, we find an interparictal pair of bones, representing here what the intermaxillary pair does in the face. The interparietal and the triquetral hones are homologous, just as are all intermaxillary bones wherever they appear, whether in the human or any other species.
The cranio-facial apparatus, plus or minus the intermar.illary and interparital bones, renders all species uniform or difiom accordingly, Fig. 7.-The intermaxillary bones, $e \in$, are normal in the lower animuls generally. The absenee of them would be a normal eharacter of the homnn specics, and in this respect the latter would differ from other species, and thus appear as an exception to general uniformity. The absence of the human intermaxillary hones is however not proved. The interparietal bones are present as a normal character of some species, and absent as a normal character of others. The normal absenee of the latter in the human cranium does not therefore claracterize this as differeut from many of the lower animals. But when the human form exlihits the intcrmaxillary and triquetral or interparietal bones it reverts to the general animal type, and estahlishes uniformity between them and it. Specifie distinetion is therefore only as $a+b$ and $a-b$, the presenee or absence of a plus quantity, e e, which it is potential in nature to effeet in any species or in all.
The fusion of dual features indicates the excess of median concentration, Figs. 4, $8,8^{*}$. When the two lateral cephalie units, $c c^{3}, b b^{*}$, fig. 4, tend to the common centre, $a a$, so far that their respeetive eentres cross ench other in a certain degree, they form an ellipse, $b c$, whose longest diameter is vertical; in such ease, the eentral unit (if it have existed) beeomes wholly obliterated. The two orbital cavities appear now as one. The two nasal eompartments, whieh were between the two orbital are absent. The nasal appendage is cither ahsent or displaeed above the cyclopie eyeball, which still is daal hy the uniou of two organs. The oral eavity is contraeted laterally, the palate narrowed, and the ineisor alveoli wanting. Thus, according to the degree of centralization undergone by the lateral forms, the head appears plus or minus as to central parts, and the condition in which it presents itsclf (be this human or of any other species) is abnormal only as exeess or defeet of quantity, and normal when of the mean quantity by which we judge of speeies.

The relative order of the abnormal and normal parts proves them equally demeats of desim.-A part, whether ahnormal or normal, always appears at the same place, and, with its opposite, exhihits symmetry. No elemental part of any kind nppears in any place without its counterpart. At the median line, the homologous parts are in exaet eoaptation. In a lateral region, a part, though separated fiom the median line, has its counterpart in a sinilar place on the other side. The intermaxillary elements are never internasal, interfontal, or interparietal. Such a elange of place is in fact no less impossible (because never oeeurring) than for the frontal elements to appear where the maxillary are, or vice versâ.

The fusion of two or more units into a symmetrical form is potential, but the division of one unit into two or more perfect symmetrieal forms is an impossibility.-This is proved in the foregoing propositions. Three eephalie spheroids may coneentre into a symmetrical and septal spheroidal one; but one simple nonseptal spheroid eannot be divided into three forms whiel respeetively inclose space completely, or whieh ein present themselves in any other eharaeter than that of being seg-
ments of spheroidal unity. ments of spheroidal unity.
The law of a centralizing fusion of plural forms into a septal symmetrical one governs development throughout the animal kingdom, Figs. 9, 9*.-This is demonstrable, especially in the higher classes of animals. All the normal forms of the piseean, the reptdian, the avian, and the mammalian types are symmetrienl, and marked with a septal median line showing two lateral forms in union. In every speeies of those elasses, nature presents us with an analysis of the phaseal passnge of two or more individuals to that uaion. In every elass, order, genus, and speeies of vertebrated animals that have come under my observation, I have notieed instanees of bipartition along the median line in all degrees from the mere hifid condition of the frame to that in whichit appears sundered into two individuals adhering but at a point, Those are the stages of eoaleseenee of plural
forms into onc. The heings in these stages for forms into onc. The heings in those stages of eoaleseenee of plural elass of dorble monstices. The beings in the last stage of complete septal symmetrical union constitute the animal in its normal claraeter. The beings in

COMMENTARY ON PLATES XIX. \& XX,

the penultimate stage of median coalescence represent the animal with the intermaxillary bones, eleft lips, and palate.
On making a section of the hend and neck vertically through the median line, we bring in view the form and relative position of the strnctures of those parts, and the cavitics they hound. The bodies of the cervical vertehre and the hasal centres of the skull are in the sume median series; and the latter separate the cranial from the facial cavitics. The continuity of each of the cranio-spinal membranes now traceable is not more evident than tint of the mucous membrane lining the frontal, nasal, maxillary, oral, largngeal, and pbaryngeal compartments. This extension of the same membrane from part to part explains how eertain pathologieal conditions, at first local, may hecome general.
The craninl eavity is wholly oceupied hy the brain and its membranes: the form of the one is determined by that of the other. From the ontward form of the cranium may he judged that of the lirain, but not so of the spinal cord in the vertebral canal. The eranium rany be regarded as subcutancous in all its parts, forming its roof from the occipital spine to the fronto-nasal junction, and from one zygoma to the other. The plane between these four points would indicate pretty aecurately the position of the base of the craniun in the living body, and the separation hetween it and the facial apparatus.
The cranium, owing to its undefended condition, is very liable to fracture, and when this oecurs, the braia is always more or less involved. In cases of fracture with depression, or hlood, or matter withiu the cranimm, the operation of treplining is required. In performing this operation, the situation of the hloodvessels is to be noted with a view to aroid injuring them. The instrument should not he applied to any point of the median line of the cranial vanlt between the fronto-nasal junction and the occipital spinous process; for this marks the coursc and extent of the superior longitudinal sinus: nor in a line hetween the occipital spinous process and the mastoid processes; for this is the course and extent of the great lateral simises: nor helow the occipital protubcrance where the torcular Herophili-the point of junction of the three sinuses-is situated: nor in the temporal tossa at the anterior inferior angle of the parietal bone where the trunk of the middle ineningeal artery asecnds the inner surface of the eranium.
Tbe nasal fosse, two in numher, and situated centrally in the upper masilla between the orbits, are separated from each other by the median septum, formed by the vomer and its cartilaginous nasal appendage dividing the nostrils. The septum nasi, consisting of two plates of bone and cartilage, may be regarded as the inner sides of the two upper maxilla applied to each other at the median line. Considered under this idea, each nasal fossa appears (what, in fact, it is) a compartment formed in the upper maxilla by a breaking up of its cancedlated structure. The turbinated bones are formed of this cancellated structure curled into shell-sbaped parts attached to the external wall of the fossa, and frce towards the septal middle line. Tbe maxillary antrum is also as a cell formed in the eancellated structure of the hone, and communienting with the nasal fossa; the ethmoidal cells, the frontal and sphenoidal sinuses have the same signifieation. All those compartments (not the nisal fossa alone) by their natural communications with each other, are hence to be viewed as neeessary to the olfactory sense and the organ of voice.
Eael nasal fossa, seen in the recent state with the soft parts attached, reaches from the anterior to the posterior nares horizontally, and from the roof of the mouth to the anterior floor of the cranium vertically. Its vertical diameter is largest in the middle, owing to the nasal hones being sloped downwards and forwards, while the cranial base is directed downwards and backwards. It transverse diameter is greatest next its floor. The existence of the turbinated hones renders each nasal fossa very irregular and contracted; but while hoth fosse are vicwed together, they appear perfectly symmetrical. The turbinated bones, three in
number, are situated one ahove the other-the uppermost is the smallest; the interspaces are the superior, middle, and inferior meatuses. At the lack part of the middle mentus is the opening of the maxillary simus; at the fore part of the inferior meatus is the lower orifice of the rasal camal. All parts of the nasal fossa are invested by the Schneiderian membrane; and wben we consider how very vascular and glandular this membrane is, a correct idea of the nasal fossa as a space may be readily ubtnined. In fact, the interspaces of the parts are hut as mere narrow chinks; and when polypi or other tumonrs appear here, they must. force a position for thenselves at the expense of the normal structures. As the flom and septal inner wall of each of the nasal fossere arc smootl, the instruments to be introduced into this place should be guided along those surfaces.

The oral compartment exists as a cavity only when the jaws are opened. On looking into the mouth when the jaws are widely separated and the tongue depressed, we enn see the back of the pharynx supported against the cervical vertebre. The hard palate which forms the roof of the mouth, appears extended bnckwarls by the soft palate, which hangs as the loose velum or valve of the throat, betweeu the posterior nares above, and the fauces below. Between the vehum palati and the back part of the tongue, may lee diseerned two ridges, arching latcrally from above downwards. These, and their fellows of the opposite side, constitute the pillars of the fauces. Bet ween the two pillars on each side appears a prominent mass--t he tonsil covered by the nucous membrane: in mather close relation to this hody posteriorly, the internal carotid artery ascends. In the lower lingmalmaxillary trench, elose to the frenum lingur, appears the single orifice of the duct of the submaxillary gland of either side, and the several smaller orifices of the ducts of the sublingual gland. In the buceal trench beside the upper jaw, the parotid duct ofens, opposite the last molar tooth. The frenum lingua is formed by the mucous meubraue retlected in the median line from the floor of the mouth to the under-surface of the tongue, and frequently is of sucb a form as to restrain in infancy the motions of that organ.
The pharynx is a musculo-membranous sac or vestihule common to the mouth and posterior nares. Laterally, it corresponds with the interval between the lower jaw and sterno-mnstoid muscle, and is here in close connexion with the internal carotid artery, the parotid ghand covering hoth. Being a muscular organ, its dinensions vary duriug deglatition, to which action it is principolly subservient; but it plays also a most important part in modulating the poice. In order to ohtuin a full view of the phargnx, it is necessary to make a transverse section of the head through the occipital hasilar process, and then the facial half with the plarynx can he bent forwards from the vertebre. In separating the pharyns from the vertebre, the loose eellnlar conmexion between both parts will explain the freedom with which the former can move in deghatition ; and how when the connecting honds are thickened (as from inflammation of the glands of the vertebral-cesophagenl grooves) dysphagin may he the consequence. The plarynx is perfiectly symmetrical, consisting, like the tongue and all median organs, of two forms nnited. On its posterior surface a median tendinous raphe appears dividing the constrictor muscles, which are three in momher, and overlupping euch other from ahove downwards, the supcrior one being partially overlapped by the middle one, and this by the inferior. When viewed laterally, the supcrior constrictor will he seen to arise from the pterygo-maxillary liganent, the middle from the cormn of the os hyoides, and the inferior from the side of the thyroid eartilage. The conuexion of the two lower constrictors and of the styloid nuscles with the laryngeal pieces accounts for the consentaneous motions of the larynx and pharynx, and indientes that both those organs equally serve for the functions of voice and deglutition. The pharyax is iufundihuliform. It hangs fiom the lasilar process of

FIGURES OF PLATE XX.
Floure I.-A, Zygomn-B, Upper nuxillan-C, Extermal pterggoid process, -D, Gile
 glossus nmacle.-I, Buecinatur muselo anul superior constriotor of pharynx. J , Midille cosstrictor of pharynx. - K , Inferior coustrictor of pharynx and asop haguac- - , Thyroid cartiligge and tradhea-M, Thyroid bods.- N N, Rejhe and left eommon carotid noteries, out.-O, Right sulelavian artery. - PP, Upper anil lover end of interoal jugular voinQ. Tranisverse process of athas.- R , Interunl carotid artery. - S , Sterna-mustoid nusole, cut. -T , Cervienl plexus of nerves, emit.-U, Rectus capitia major nuzele-V, Levator angali

Bruchan plexus of norres - $X Y^{\text { }}$, Clovicle and sternmelarichlar artioulation.
Fradre II.-All parta, except the following, aro marked as in Fig. I.-A A A A^{*}, Falx arcori and tentorium cerebelli.- B, Corevellar compartincut.-C, Cereliral compartacent
-D, Spinal casnl and forminina, lined by the durn mater:- H. Geniohhyoglossus miscleI, Yelum palati, in scetion- - T, Tonsil projecting between pillars of favers- K . Fustachian

Frover III-A posterior view of the resophaghes, K, showing a pouch K°-(formed ty protrosion of the uncens membrane through the masecilar ibreas)-immediately above a trioture.- K^{50}, Situated opmusite the cricoid cartilages The catheter, 1 , in passed throngl the usoplaguss; the catheter. 9 , through the trichon-
Figine IV.-Sloma a sinitar vieiv of a stricture, K^{*}, of the mapplagus, K . nt the sume ploces, with a bengio, 1 , pased throngh it.

COMMENTARY ON PLATES XIX \& XX.

the oceipitn bone, nud, gradmully contracting from above downwards, forminates in the cesophageal tabe belind the cricoid eartilage. This is maturilly the rarrowesl polt oll the pharym: here it is most linhle 10 stricture ; nud here also foreign bodics are frequently arrested. When we open the phurynx along its posterior median line and turn its lulve aside, we bring in view the nasal, oral, largngeal and cesophageal oprenings. Thee relntive position of those openings, when the parts are in repose and in motion, muy now be asecutnined. The pharyna reecives then all ot its from aspect. The two posteriur nares are the appermost, and present the dividing medime septnm, which, with the other bonndaries, gives ench haris a gmaduilateral form. The posterior end of the lower turbinated bone is visilile, and immedtately behind the inferior meatis appears the orifice of the Enstachian talse. On removing the mincons membrane from the borders of the nares and the upper surface of He velum pulati, we expose two smull pairs of muscles, (the levatores and tensores pmlati of either side,) arising from points immediately abore the mares, and becoming attaehed to the velum. Those muscles, besidus neting on the velum, sorve to contraet the nares and modify the msal somuds. The oral uperlure is separated from the uasal ly the velum. This structme, prolonged from the hard palate, constitulpe the woft palate, and performs the offee of a valve in respect to the imres and the mouth alternately. The veluu is ssmmetrieal: it has a mphe at its milhle line und this is produted through the uvula marking the symmetry of this little appiendage also. In eases of eleft palute, the parts are always separated at the median rapbe; aud the uvula, uaturally saygros, now appears dunl, cuel half being moveable by a distinet levatim: muscle. From the laterul attached borders of the velum, two rinleges on cach side arih downwirds; one to the root of the tongue, and the other to the side of the pharynx. Those ridges on either side are the pillars of the fittees, thed those of opposite sides form the funceal archers. The two pillars are formed by two museles, which project the mueons membrane inwards. On dissecting the membrane, the muscle of the anterior pillar (palato-glossus) and that of the posterion oue (palalopharyngens) alpear, having their origins and insertionss as their names indicate. The velum palati, then, having cight muscles-two superior aud two jufenior on each sides, and the action ol those of both sides being in opposition, and muking truction lion the econral raphe, while those above and betow are likewise in opposition: we cun understand how, in eases of clelt palate, the sepurated sides of the velum should, under their influenec, prusent the nppearance as though the part were ultogether wuting. 'The oprevation shaphyloretphy consists in the section of as many of those muscles as can he reached in order to allow of the appunimation of the sumdered parts to each other along the median line. 'the eleft hard palate is not inllueneed by the action of the palatal muscles. The derares of polutal clentrayr are: 1st, the double urula; 2 nd , the
divided velum: 3rd, the divided soft palnte; 4th, the divided hard palate, with the vomer seen in the centre, 5 th, the divided palate and lips, with the intermaxillary hones.*
hetween the two pillars of the fanees is the fosst, oceupied by the tonsil, which varies as to size in different individuals. The posterior oritiee of the oral eavity, opening into the pharynx, is the isthnnus faneium bounded above by the velum, helow hy the root of the tongue, and on each side by the pillars. The dimensions of the isthmus vary eonsiderably, aeeording to the position of the tongue and the aetion of the museles forming the pillars. In the use of gargles the fauces become completely closed and prevent the fluid coming in contaet with any part behind them. When the tonsils enlarge in inflammation, they eontraet the passage, and in many instances elose it entirely, so that respiration beeomes altogether nasal. When the mouth is shint, and the dorsum of the tongue applied to the palate, the velum palati with the uvula pendent on the roof of the tongue, eloses the isthmus faueium, but the pharyageal cavity being permanent as sueh, allows the air to bave free aceess to the glottis tbrough the posterior nares. At the root of the tongue, immediately above the glottis, appears the fibro-cartilaginous epiglottis, which is ordinarily ereet, and which, on the elevation of the larynx in deglutition, closes like a valve the opening of this organ. Below the glottis, opposite the erieoid cartilage, appears the cesopbageal opening, which is ordinarily closed by a slight tonic eontraction of its eirenlar fibres. The cesophagus itself is usually of a sbape compressed from before backwards. Its interior is not tubular: exeept during the passage of aliment, its sides are in contact. The oesophagus is so deeply situated between the laryngot-racheal apparatus and the vertebml column as to be almost surgically inaceessible. It occupies the middle line behind the upper part of the trachea, but it inclines slightly from it to the left side of the root of the neck, at which situntion the operation of cesophagrotomy has been performed. While the head is thrown baek, the nasal and oral eavities look almost vertically towards the pbaryngeal sac. This is the position instinctively talen by the pritient for his own ease when instruments are being passed into the oesophagus by cither passage. The epiglotits, if encountered by the instrument, will generally prevent this from entering the glottis, and gtide it to the esophagus. This object will be further sceured by dirceting the instrument along the baek of the pbarynx. When the instrument enters the cesophagus it beeomes grasped, indieating the usual contracted state of this organ. When, in suspended animation, we endeavour to inflate the lungs through the nose or mouth, it is necessary to press the larynx against the vertebral column so as to prevent the air passing by the cesophagus to the stomael. The natural inspiratory motion of the thorax inducts the air through its proper eanal, and does not affeet the eesophageal opening; hut the case is different when the air is forced hy extrinsic effort.

On consultugg hir warks in thow anntomists who have recorded their views respecting

 unnmend firtull haval, thmugh he nillenits their existence in case of hure-lip, and hence that

 muther than cunelude that natum, is mirmul in respect to nar eoalterustion in the lather,

 whum sumuingly ulsent nre unitud tu thene. Thut sued is the actual gtate in sither couse 1
 incina- tee th, whichl ane prolnt to the internunaillary bones only, and which, weere those

 junctiosk

Inust ho inveed, while it is demonstrible that the formation of the facinl features, like all others in central siturtions, ocentra by a closare and fiusion of latemi prorts at the middle live. of imperfiect dovelopment being traceable in tho human fetal conditiou, aud instances presemting themselves in the newly-hurn, the explanation of these is pluinly dedneible: preselking themselies in the newly-turn, the exphanation of these is pluinly dedneible:
harcelip is is phasis in that process of uniou, wherens the normal featurcs result lyy the completion of that proceseg nad still cexhibil traecs of the origimal state, wlich proves that the form which is now preficet, lus been imperfect-has passed frome tho grentor state of

 The form of the upper lip is due to the prescnee of tle inthermaxillary bonces. The medion vertical furrow of the lip, eorresplowing to the medinu intermaxillary suture is a yestigu of the wismitive central haviul fissurc in tho human embrro and of that which is perruaucne tud matural in many of the mammatian. The two lathial rigges which hoomd this farrow, and
which correspond with the two maxillarintermaxiln Hhich correspond with the two maxillar-intermaxillary sutures aro the parts in whieh in cases of single and double harelip tho cleft invaniably occur, and each ridgo is an indication "f the uniou in this place ns the furrow is in that.
Now when from the particulur consine
Now when from the partieular considention of hare-lip we pasa in review all those varietics of conformations-the so-aulen Lunus Neuture, which aro characterised by a fusiou of inlividuals at a common medinu live-we cannot fail to recognise them all as as close trawilional the one iuto tho othier. As things of a ereies naturally related and as the
resuls of the sunce creative process, the trie explination of results of the eanne creative process, the trine explanation of any one of them (fif wo would 1 wand thereforo innst serre for all of them. Being creations of tho same arder, PI. XTX, washld therefore ibohthe them from the indiseriminate heap, of usere molformust ons, which, occorring frow either blighting necidont, or pathelogieal fault, can serve no more to chact-

 cephacio or than thoxe resintiug from mollities orsium. But when we contemplate tho Thecercdelphij in all their degrees of uxion (from that of a Stiamese-teinandeudity to that of a hare-hip tisurc), wo finl thom expressing osece connected sentence, emuciantivo of notling if
 Celled monafres in the echase of the derivintive monestrare, for they demonstrato (witness, with

COMMENTARY ON PLATES XXI. XXII. XXIII. XXIV. \& EXV

THE FORM OF THE ABDOMEN AND THE RELATIVE POSITION OF ITS CONTANED ORGANS IN HEALTH AND DISEASE. PARACENTESIS. PENETRATING WOUNDS. DELIGATION OF THE AORTA AND COMLION ILLAC ARTERY. HYSTEROTOMY. OVAR ARTERY. HYSTEROTOMY. OVARLOTOMY. MECHANISM OF THE THORACICOABDOMINAL AIPARATUS.

Is outward configuration the thorax and abdomen constitute an entirety, the members of which, even in proeess of dissection, we cannot consider irrespective of each other, withont losing sight of their combined meaning. Just as the integument forms a common envelope for both parts, so are the muscles connected witb both, and by their action affeet both and the organs proper to each; and so likewise does the perfect skeletal trunk form a frameroork for both. We cannot, while we contemplate the perfect skeleton, isolate the thorax from the abdomen hy fact or fancy; for, considering the skelcton morphologically, that is, in regard to its fibrous, cartilaginous, and osscous parts, the only difference between tbose regions results simply from the circumstance that the sterno-costo-vertebral osseous circles, which completely gird thoracic space, have not tbeir complete counterparts of entirely osseous structure encircling aldominal space. This difference is, however, merely histo. logical; for while the posterior parts of the thoracie ribs are seriaily represented hy the "transverse processes" of the lumbar vertehre behind the abdomen, so are the anterior and middle parts of the thoracie vibs, as hone, represented in the abdomen by the linea ablo centrally and by the lineere semilunares and transverse laterally. Tbat these fibrous intersecting bands of the abdomen are truly the homologues of the thomacic costosternal pieces of the thorax in man and the mammalia, is a fact demon. strable in the forms of the lower classes of animals. In the human species the osseons vibs are not of invaiahly the saure number; for we rotice oecasionally an increase of the normal number of teelve, both at the summit and the base of the thorax. At the summit one or more supernumerary pair of opposite ribs appear, and, according to tboir number, deerease the length of the cervical spine as ordinarily formed, and inercase that of the dorsal spinc. At the base of the thoras, too, the same occurs, and produces the same result in regard to the dorsal and lumhar spine. Now, as the presenee of those supernumernry ribs is invariably attended with tbe absence of those processes of a cervical or lumbar vertebra, which are named "transverse," what other signification can the fact have than that the transverse process itself is the anchylosed vertebral end of a rib? Secing, then, that that part which is numerically and locally the same in one human form is not quantitively the sane in all individuals of that species, we may fairly conclude that the difference is simply that of plus and minus; and if, from this point of view, we pass in survey all species of vertebrata, we shall fiad that their multitudinous designs result by the same simple mode of ereation-nanely, the suhtraction from an integer or whole archetypal quantity. In many of the reptilian and avian species the costal arebes encirele the thoracico. abdominal region as if it were a common pulmonary chamher. In the piscean and some of the reptilian species the costal arcles enclose the cervical, thoracic, and abdominal regions, as if they were a eommon abdo. minal chamber. In man and the mammalia, the eostal areles completely enclose the pulnonary chamher only, and those costex, as bone, fail at that region where the ventral organs are loeated, and likewise at the neck. While, therefore, on comparing the human abdonen with the thorax, we record the anatomical difference that the thorax is costo-sternal and the neek and nhdomen non-costo-sternal, that fact. and its final cause crnnot apperr more evident to the sense than the signification of it must appear to the reason. The parts of a whole quantity which are present must relate of the parts which are absent from that quamtity, and thas we have ever prefigured to us the iden of that whole. A semicirele is
part of a circle. When I am slown a human thorex mink its anterior costo-sternal part, I know not only that the thoras wants that part, but also that it once existed and is now alstractel, else it would still exist. The human neck and abdomen, minus the like parts, must express the sume signification. The parts have been subtracted from the whole quantity, and the remninder is a neek or an abdomeu; but if those parts still existed, the abdomen and the neek would still be costal, bke a thomas. The want, therefore, is the design; and the subtractiou of the parts now wanting is the act of a designer as clear as if we saw and felt his hand corporeal plying.
When with those idens which the skeletal fabric of the trumk comparatively contemplated suggests, we disseet its soft parta and its viscera, tbe task is attended with an interest not othervise to be realized. Thus, if we figure to ourselves a form consisting of a series of sterno-costu. vertebral circles renching from the maxillse to the pelvis-and such an archetypal form is in nature-we shall see that the human form itself deseribes that very same coudition. In order to recognise this fact, we must disest ourselves of the idea of a skeleton as consisting of houe only. The proeess of ossifieation being of three stages-a fibrous, a cartilaginous, and an osseous,-and that part which now exists as bone luving passed through the fibrous and the eartilaginous stages, it follows that the true and complete skeletou must eansist of parts in those tbree stages; for; if we except the filhons parts as imperfect, so ought we to except the eartilaginous parts also for the same reason; and tben we reduce the skeletal thorax itself to a form ineomplete, sinee not encireling space. But when (as reasonably we must do) we include in the skeleton all the parts wheh respectively represent those three stages, we perfect the ideal form, and, in doing so, wre place the actual design in a clearer hight, for now the abdominal walls are ribbed by suhstance in the first (fibrous) stage of the ossific process, as suitable to their motions in respect to the enclosed parts; while the thoracie malls are ribbed hy substance in the sceond stage (eartilaginous) and in the third stage (osseous) as condncive to their proper finetion. Under the same point of view we can figure to ourselves not ouly the proximal, but also the remote plysiological siguification of the cranio-facial and eervico-laryngenl apparatus; for, now comparatively considered, the laryns is to the cervical vertebre, and the maxille to the cranial vertelore, what the costo-sterual apparatus is to the dorsal spine, viz., ns parts of whole dorso-ventral quantitics pheed scriatim; and hence the analogy between the facial, laryngeal, mal costal forms, as anterior parts of the skeletal trunk, must-however diversified by modification to special functions these necessarily ara, (and mark in that modifieation the existing design!)-be still as real a condition as that at once apparent between cranial, cervical, and dorsal vertebre. In those general considerations we may; besides their plysioulogicul import, perceive their practieal application likewise, if it be only to slow that eostal inelosure does not gethally isolate thoracic from either cervical or abdominal space. The line of sepantion between thuse compartments, so very indefinite in the lower aumals, is a condition to no small degree apparent in the human form nlao, and hence the liability of the pathologist to err in his diagnosis betweer the hoalthy and diseased organs of cither region, for all in mass lis in relution to cach other with only the pletura between those of the nerk nnil thuse of the thorax, and ouly the diaphrmen sopmrating those of the thoras fixsm those of the abdomen, white the motions of that muscle influenes all ut
the same time so that the level which it occupies when quiescent, is allernutely taken during respiration, hy those organs which are applicd to its upper and unter surfiecs. For these reasons it hecomes necessni'y to consider the whole trunk ns a fatric one nud indivisible, and to have at the same time unter notice the organs which nocupy it.
The abdomen is usnally mapped ont on its cntnicous surface by certain artificial lines, dividing it into regions, so as to serve to indiente the position of its organs. It is marked ulso by maturul lines, sulficiently suparent in most individuals, and those lines will, it seems to me, much better answer the same end. The compartment in which the abdominal risecra are contrincel, is at all times of greater capacity than the thorax. Tbe diaphragm divides the two. The margins of the false rilhs, which can be felt bencath the surface, extemoling from the siphoid cartdage in front downwards, and lackwards to the twelfh dorsal vertebra, give atteclument to the diapluagm; but as the form of that muscle is not plane between the oppusite margins of the ribs, but rather considerably arched, the height of its arch, which maries fiom one to three inches from its attached briler, accorling to the respiratory motions, gives the height to which the ahdominal chnuber projects into the costal region through the span of the lower rils. The false ribs, then, are in fact more abdoninal thau thoracic. From the summit of the diaphagmatic arch to the plane indicated by the lrim of the true pelvis, we mark the verfical extent ol the aldumen. The form of this chamber is the reverse of that of the thorax. The vertien diameter of the front of the thorax is of less exteut ly a third than that of its back; while the vertical dismeter of the front of the abromen is greater by a third than its hack. In hoth the erect and the smpine posture the ahdomen assumes this form, and it is due to the fict of the eliaphragm and pelvic brim being so inclined from ench other, that a perpenclicular drama from the mitdle of the one would interseet that of the other at the umbiliess. This congenital mark-the natel, indicates the ceutre of the nuterior abdominal wall; it. is the point at which the linen alhas and middle linea transversa cross each otber at right augles, and divide the abdominal frout into four quarters-two superior and lateral, and two inferior and lateral. The osscous sternum, the xiphoid cortilage, nart the fibrous linea alla, represent the anterior middle line of the skeletal trunk in the three stages of the ossific proeess, and the three parts continuous fomu a liuc dividing the thoracicoahdominal chamber into halves, thus marking, with the laryngo-tracheal apparatus ahove, aud the pulhic synuphsis behow, the l,dateral symmetry of the body throughout. The linea alla intersects the middle of the stomach betreen the siphoid cartilage and the mubilicus. When the stomuch is empty its inferior curve is ahove the umbilicus; when disrended it is on a level with that point, and sometimes below it. It is an error to suppose that the stomach, in being distended with aliment during life, turns forwarls and upwards in the sanc mamer as it does when it is iuflated and the front of the nbdonen removel. Behind and a little below the umbiliens is sitnated the middle of the tronsverse colon. Between the umbilicus and the symphysis pultis the liuea alha eqnally intersects the convoluted inass of the suall intestines and the summit of the urimary bladler, when this orgnu is uordinately distended. The linen transursa corresponding to the umbilicus chincides with the transverse colon from right to lett, bunt the extremitics of this part of the great intestine siak hackwards and uprwards from the abiomium front under the lower false rihs. In the superior right quatter, the organs which lie in contact with the ahrlominal wall are the liver, projecting its margin from under the fulse ribs, the pyloric half of the stomach, and the gall bladder partially depending lion beneath the liver: Iu the left superior quarter, the lurger or cardiac half of the stomach wholly oeeupies that space, and is partly covered by the lower ribs. The spleen lies decply from the nuterior parietes in the subcostal reeess, between the hulging end of the stomach and the rihs. In the inferior right quarter and in the left the small intestines, eovered by the omentum, lie next to the abdominal parietes, upon the sumnit. of the bladder at the middte line, and in front of the catemen on the right ilsac fossa, and of the signoid flexure of the colon ou the left. The iuferior houndary of the abdomen reaches hetween the opposite upinons processes of the iliac crests, and is marked hy the inguinal fotds producel and joined ut the upper border of the symphysis pubis.

The parictes of the ahdomen are constructed prineipally in reference to the organe contained in that cavity, but their correlation with those of the thornx is also very evident. The aldominal interument is very extensile, the suheutancous adipose tissue nbundant and clastic, and the unseles very mobile, in consequence of the alsence of the ribs, On renoving the intergunents from the thorax and abdomen, we find the miseles strutehing over the intter, between the ribs and the pelvis, and rvidenty, by their forms and connexiona, indicating the serial analogy
between those hones. The aldominal muscles, like those of the thorax, e-shibit perfect symmetry. On cither side of the linea alba appear the two recti museles, invested by stroug fibrons shathe, and reaching from the stemom and seventh costal cartilages to the symphysis puhis. The tendinous intersections, which vary in number, but never exceed that of the lumbar vertchre, whose coste they represent, show that each rectus muscle is made up of many united for one action. On the outer border of each rectus appears the linea semilunaris, which gives direet insertion to the tendons of the two oblique and the transverse muscles-the sheaths of the rectis being formed of expansions of those tendons of the broad muscles of opposite sides meeting at the linea alba. The obliquus externus arising from the outcr surface of the lower ribs, where it interdigitates with the serratus magnus, also from the lumbar aponenrosis, and from the crista ilii, sends its fibres downwards and forwards to its insertion; the obliquus internus having the same origin, except that. it arises from the margin of the false ribs above, and from the outer part of Poupart's ligament helow, sends its fibres radiating to its insertion; the transversalis muscle, from a similar origin, sends its fibres as its name indicates. The fibres of the three muscles will be thus noticed to decussate, and from this disposition of tben and the reeti two principal objeets are attaincd-riz, a variety of action (bracing) from their united efforts, and an efficctual defence against intestinal protrusion. The analogues of the recti muscles are the triangulares stemi, in the thorax. The aralogues of the oblique and transerse museles are the decnssating layers of the intercostal muscles. This serial bomology is traccable (though in a less marked manuer, owing to their extreme modifieation) in the ecrvieal museles, arising from the sternum clavicles and ribs, and inserted into the larynx, spine, and lower maxille. Between the jaws the buccinators aud the pterygoid muscles, likewisc decussating, are of the same serial order.

When we remove the front of the thorax and tbe abdomen, we bring in view the visccra of hotb eavitics as tbey lie in their normal relative position. The diapliragm, now in transverse section, will be seeu to lave the heart and hugg on its upper surface, and the stomach and liver applical to its lower. By pushing the lungs from above downward, it will he found that the diaphragm offers no hindramee to the impulse heing communicated to the abdominal viscera, and cyen to the pelvic as far as the perinæum. In forced respiration the same takes pluce to a certain degree, and still more so in all expulsive efforts of the whole trme. The organs whicb are in structural connexion with the diaphragn are the heart, hy its pericardinm, the stomach, by its peritoneal investment, and the liver, by its suspensory ligaments, and thence it may be inferred that those orgaus must obey the diaphragn, according ns it deseends and aseends by the niternate inspiration and expiration of the lungs. During those motions of the diaphragm the form and capacity of either compartment undergo a change, and so likewise do their respective viscera in regard to relative position.
On comparing the thoracic with the abdominal viscera, the point which first strikes attention is the want of symmetry in the latter. This character of the abdominal organs is, however, more apparent than real, and is duc chicfly to the necessary manner in which they are folded and applied to each other. In the thorax the organs are in pairs, and separated by a septam, so as to allow of a distiuct action of the thoracic side on its proper lung, and on its heart tbrougb the intervention of the lung. The double cireulation requircs the duplex heart, and for the action of this a ling on each side of it. But a symmetrical aetion of the abdomiual walls not bcing needed for the function of the viscera cneloserl, we find that their symmetrical relation is not maintained. Most of the abdominal organs are single, hut cach of these is symmetrical per se. The stomach and intestinal tube throughont is fashioned of two sinilar sides, iuvested by the peritonaum; the mesentery which attaches the intestines to the lumbar spine is formed of that membrane, and consists of two layers, whieh, in the manner of those of the mediastinuo, are reflected to the parietes, and nll parts of the membrane arc continuons. The liver on the right side points to the spleen as its counterpart on the left; tbe kidneys are a pair exactly sumilar as to form, und placed in opposite corresponding situations.
The ahdominal viscera (like the thoracic and ecphalic) are moulded upon one another, and in mass are cast in the form of their containing ehamber. The solid organs-viz, the liver, splech, and kidneys, have not their forms influeneed by their respective functions or hy the motions of the alrlominal parictes; but the hollow organs, aecording as they are empty or fill, of course alter in shape, ind oecupy more or less space. Whether empty or full, however, the stomaeh ind intestiues still lie in eontact with the ablominal walls, for these contract or relax duly in the measure of the space those require. Like all the serons sacs, the peritoneum has no in-

ternal space; its sides, like those of the pleura, are everywhere in apposition, for between the viscera, which the peritoneum closely invests, one and all, there is no interspace in health, and consequently, so long as the parietes are entire, they cleave to the viseera, and these to cach other, on the same pneumatic principle as tbe lungs do to the thoracic walls, to each other, and to the heart between them. The motions of the solid viscera are those of the thorax and nbdomen in reciprocal action ; in addition to those motions the hollow viseera have their own, originating in their musenlar tissue. The peritonæum, bedewed with its proper secretion, facilitates those motions. The peritonoum, taken as a whole, is very much more voluninous than the two pleure together; and this difference is owing not so minch to the eollective bulk of the viscera of the aldomen being greater than that of the thoracic organs, but to the circunstance of the former being of greater number and variety of slape tban the latter. In addition to this, we find the peritonoum forming duplicatures-the omenta-which do not serve as immediate investments ior the viscera, and to all appearance have no other nse than to extend the secreting surface, for facilitating the peristaltic motion of the intestines, and to fill more accurately the interval between these and the abdominal parictes. A true idea of the form of the peritonemm inchales the topogrophy of the whole abdominal orgnns, just as the form of the pleure gives the relative position of the thoracic organs.
The peritonaum represents at the same time the form of the abdominal chamber, wbieh it lines, the individual form of each of the riscera of that chanber, and the exact relative position of these. Anatomists liave hitherto described the peritonæum as a single membranc, and in that character have endeavoured to trace it from a point over the surfaces of all the abdominal visecra contizuous to that same point again. This idea of the membrame cannot be accurate, as will be seea in the very mode by which they undertake to prove the truth of it. The serous lining of the abdomen, like that of the thorax, consists (as 1 believe) of two membranes, of two distinct and respectively complete sacs; and this may be demonstrated. I open the abdomen by transverse seetion at the umbilieus, and from this point trace the peritonaum upsards behind the anterior abdominal wall to the margins of tbe false ribs of either side, and thenee backwards beneath the diaphragm. On passiug my hand between the adjacent surfaces of the liver, stomach, and spleen below, and the dia. phragm above, I feel its progress arrested by the struetural connexion between those three organs and the musele. Examining this cornexion, it appears evidently to be owing to the fuet of tbe peritonæum being rellected from the diapluagm to the upper surfaces of those organs. After elosely investing those surfaces and the anterior inferior half of the liver as far as its transverse fissure, it forms, between this and the stomacb, the upper layers of two conneeting media,-the gastro-hepntic and splenie omenta, which would be more properly named mesenteries. Having gained the greater curvature of the stomach, which reaches nearly across the abdomen, the membrane descends as the first luger of the great omentum to its lower margin, and here turns up behind it as its fourth or lindmost layer to the fore part of the transverse colon, whose render surface it invests, and thence pisses to form the inferior leyer of the meso-colon, which is attacbed to the spine beneath the pancreas and duodenum. From the latter flace the same membrane is traceable as the upper layer of the mesentery to the small intestine, which it covers, and next passes as the under layer also of that mescutery back again to the spine. From here it descends over the lumbar vertebre and great bloodvessels for some way into the pelvis, where it gives a covering to the rectum, and attaches by a short mesentery that gat to the sacrum, forms a ponch between the rectum and the utcers, invests this organ, forms another ponch between the uterns and the bladder, invests the upper part of the latter organ likewise, and finally ascends the lower thalf of the abdominal parietes to the umbilicus from which it has been traced. This membrane, thus eoutinuous throughout, represents a perfeet sae; it is that which, when we open the abdonen, we see as the shining anterior coverimy of all the organs, execpt the eolon, pancreas, and dnodenum. To supply that corering to the latter parts, the postrior covering to the liver, and stomach, and also to form the two midille layers of the great onentum, requires a distinet
serous membrane, and this exists: On lifting the forepart of the liver from the stomach, and exposing the gastro-hepatic mesmentery; if this structure be divided transversely, its scrous shuing surfare back and front will indicate that it consists of terous andimemes in structural con. nexion. The antrior hayerof it is part of that serons suc above deseribed; the posterior leyyer is not. The posterior layrer is traccable from the line of seetion upwards to the transverse fissure of the liver, and thence tu the under surface of the posterior half of that orgen which it attreches th the dinphragm. From that point it is to he scen turning downwari on the posterior part of the diaylurngm to the jamereas and duodemma; these it invests on their front aspects, and thenee is traceable as she upper hyyer of the meso-colon. Haring reached the colon it next covers the untirior half of this viseus, and from its lower horder descends into the great omentum leetween the layers of the other riembrane; and, having reached the lower border of this part, turns up ngyin, lacing itself (thus firming the two inter omental layers), and reaches the greater curve of the stomach. Of the stomach it then forms the postrion investment, and is traceable upwards as the posterior hencer of the gastro-hepatic mesentery th the transverse section of this, whenee it has been traced. Such are the anatomical facts which appear to me to give proof of the existence of tee abdominal serous sacs; and, if further proal' were wanting to eonfirm the correctness of that view, it may be had from amalogy. All the serous membranes are in pairs, placed opposite each other, ill reapect of the median line. Tho cranial arachnoid mennbane, the thomacie pleara, and the serotal tunice vaginales, have that disposition. The peritumal membranes do not appear placed in laterel syminetry, but it is the rellative position of the viscera which they invest that causus this. And if it be urged as an objection to the duplicity of these membranes, that they nere continuous at the "foramen of Winslone", moder the liver, it shunld he remembered that the living of the uterns is contimuons with the peritonanm at the fimbriated cnds of the Fallopion tuhes; and yet we don not account both these menbrames as one. I have seen an instanee in which, to all appearance, the tunice vaginalcs conmuniented throngh the septam scroti; it was a case of donble hydrocele, which allowed of the fluid of one sac to be foreed into the other. This eommumication between the tunice vaginnles must hate been a secondary oceurrence, for we know that originally they are distiuct productions of the lining membrane of the abdomen. The "foramen of Wiuslow" (if indeel it be a fintanen, and that we are not deceived by the complication of the parts) may likewise be the result of a secondary canse. It is not uncommon for the "envity of the omentum," which I conceive to be deserihed by a serons membrame distinct fion that which forms the "general peritonaal cavity," to eommunicate with the latter by a cribriform eondition of the four omental layers.
Tbe relative position of the abdominal viscera to each other and to the thoracic requires notice at the same time, whether we examine them in healti or disease. In death their relative position is fised and readily ascertaimable, but during life the organs are subject more or less to a change of plaee, not only as regards themselves, but also their comniniug chambers. This ocmrs when the organs are in their normal condition, and slould be borne in mind when haring recourse to 1 lecussion and nuscultation: in disease it adds to the dinjeulty of making a correct dingnosis by those operations. All the thomecic abdominal visecm grvvitate. In the crect posture they benr down of their own weight from the summit of the thorax to the perineum; but during this time the thoracic viscera are, in some measure, supported from the abdmminal by the tovic action of the diuphragm, thongh both are influeneed by the motions of that innsele. The abdominal organs are sustained more particularly by the amterior muscular purietes of their chamber than by the pelwis. Tbe protrusion of the bowed throngh mounds of the uldumen proves the sustaining office of those parietes, and that while they are entire, the mesenteries must. he in a state of laxity. Ia the supine posture the bowels gravitate owards the spine, and the purietes of their chauber are then inactive.

The liver occupies the right hypochondrime region beneath the diaphragm, and is suspended fron that muscle by its proper ligamenls. The
figures of ilate xill.

[^4]liver is situated here antero-posteriorly and trimsversely, renching from the anturior margin of the ribs to the spiue, and from the eartilage of the eleventh rib to that of the seventh joining the sternum. In many adults the left lohe of the liver crosses the median line to some considerable distance: in early iufaney this is the normal condition: in the primitive stages of feetal development it touehes the spleen in the left lypochondrine recess. Its upper surface is eonvex, corresponding to the concavity of the diaphragm; its under surface is fattened, and covers the pyloric portion of the stomach and the duodenam. When of its nomal proportions it is almost wholly eonecaled benenth the costo-diaphrarmatic roof; its anterior margin alone, for an ineh, more or less, being the only part within the cognizanee of the practitioner's toueh. But when alnormally enlarged, it protudes eonsiderably from under the ribs into the abdomen below, and at. the same time elevates the diaphragm, thereby eontraeting the right thoracie side. The abrlominal protrusion of the liver may, however, exist without being proof of its diseased state, for it may be pressed downwards either by an effusion into the plenra, or by an emphysematous lung. On the other hand, when actually cularged, it may, instead of revealing itself in a downuard situation, elevate itself to even a level with the fifth or sixth rib, pushing the bnse of the right lung to that height, and then, while pereussion elicits a dull sound over this plaee, sueln sound may be mistaken for a hepatiaed lung. On deep-drawn inspiration the lung descends with the diaphragm, and both push the liver from under the ribs more than usunl, and then percussion at the anterior thoracie base sields a sonnd more puluonary than lepatie. After extreme expiration, when the lung with the diaphragm has ascended, the liver likewise is drawn up more under the ribs than usual, and now perchssion over the snme part yields a sound more hepatic than pulnonary. The state of the liver can always be aseertained more exactly before than lechind, for in the latter situntion there intervelu's a mueh greater thiekness of parts hetween it and the surface.

The stomachi is sitnated transversely between the margins of the opposite false ribs, and ocerpies the interval between the sternum and the unbilicus. On the right side the fiver partially overlaps it, but at the epigastrinu and left liypochondrium it is immediately beneath the anteris parictes. 1ts upper or smaller curve is turned towards and close to the diaphragn, whieh transmits the resophagus at its eentre; the lower or greater curve of the stomach is in eontact with the transverse eolon from the right to the left lypochondrium. To bring in view this part of the colon and the small intestines it is necessary to detach the omentum from the lower eurve of the stomach. The left or greater cund of the stumach is under cover of the left false ribs, and is sepurated from the diuphragm ly the stleen. The right or lesser end of the stomach and the duodenum are separated from the diaplirngon by the liver. The esophagenl end of the stomach is more deeply situated tian its pyloric end. The stomach, whether empty or full, does not elange those relations, but in the latter condition it oceupies greater space in the abdomen; and then, to alluit of its increased volume, the auterior parietes relax. When percussion is made from the encikie and hepatie regions to that of the stomach and intestines, the flat sound elicited at the two former places is changed to a hollow sound in the litter. A distended stomach is in some degree an impediment to the action of the diaphragm and to free respiration; the aurta and vena cava behind it must suffer pressure from it ; and it is also true that the heart's free action, which is so dependent ujon free respiration, must, in this state of the stomnch, he inpeded. To those cireumstances combined may he ascribed the disposition to sonnoleney post plenum prandium in all amimals of that habit of diet.
The spleen, when of its normal proportions, is of the size of a kidney, and somewhat of the form of that organ. It lies decply in the left bypochondrium, between the diaphragm and adjacent bulging end of the stomacb. To bring the spleen in view it is necessary to draw the stomach from the left subcostal recess. The spleen is attached to the bulging end of the stomulh by a mescintery, in which are the vaso lirevia of the splenic artery. The panereas muy, at. the same time, he sectu reaehing transversely from the spleen to the duodenum, and situated behind the cardise end and superior curve of the stomach. The spleen is liable to extraordinary incrense of size, especially in those who have been for a long period the subjects of ugue. In such individuals the spleen has been found so large as to luve distocated the stomach from the sulicostal recess; depressed the left kiduey to the iline fossa, and elevated the diaphragin on its own side to a level with the fifth rib. In that condition the spleen impedes respirntion on its oms side in the degree that it contracts thoracie space, und from its presence in such unusual positions its form and size can be readily diseerned by pereussion. When the spleen is thus eulnrged it projects from mider the false rills towards the epigastric
region, like an enlarged liver, and, both organs heing of the same colour, adds to their similitude. While we find that every lateral organ of the body, execpt the spleen and the liver, has its opposite counterpart, would not this seen to express (there being in nature no exceptions to ber universal law) that those two organs refer to eaeh other in form, if not in function?
The intestinal canal, consisting of the duodenum, jejnnum, ileum, and colon, oeeupies the lower two-thirds of the ahdominal ehamher. The duodenum and jejunum lie decply under cover of the stomaeh; the ileum and eolon float in eontaet with the anterior ahdominal walls. The molility of all those parts allows their relative position to be examined without further disseetion. On elevating the forepart of the liver, and parting the gastrolhepatie mesentery, we find the duodenum, in slape resemhling the stomach, hut bending in a contrary direction to that organ, that is from right to left, and at the same time haekwards and dommards. In the eurve of the duodenum appears the head of the pancreas, whose duet, and also that of the liver, it here receives. O_{n} raising the stomach and eolon, and tracing the continuity of the duodenum and jcjunum aeross the spine and the great bloodvessels, we notiee the root of the superior mesenterie artcry, whiel, passing in front, serves as an artifieial mark between those portions of the bowcl. From the commeneement of the ileum in the jejunum to its termination in the coeum, the convolutions of the small intestine nllow of being unfolded, and the form of the mesentery examined. The micsentery is phicated according as the intestine is eonvoluted. Its posterior horder, which is attaehed to the spine heneath the meso.colon, extends only from the second lumhar vertebra to the right iliac fossa, while its anterior horder equals in length that of the small intestine. Hence it is that the folds of the mesentery are deeper in front than behind; and from this disposition of the part it results that, not only are its prineipal offices of being a hed for the numerous hloodvessels, lactenls, and glands, and a suspensory hond for the intestine well served, but space is economised, and the vermieular motion capahle of being performed as freely as if the bowel floated free and unattached hy it. The snume remarks apply to the meso-colon. The eecum is fixed in the right iliae fossa by the peritonrum, which invests only its forepart in some indiriduals; in others it is loose in this situation, and covered entirely by the membrane, which then forms a kind of mesentery for it. In the latter cases a hernial protrusion of the part is possible. The ceecum is covered enteriorly hy the convolutions of the small intestines in part; and it is partly also in contact with the ahdominnl parictes at the outer half of Poupart's ligament. During life a gurgling sonnd is pereeptille in the situation of the eceum, and is eaused by the passage of the intestinal matter into it through the ileo-ceecal valve. From its ececal origin the colon ascends the right loin as high as the liver, and is here overlaid by the gall bladder; from this place the colon crosses the aldomen immediately below the stomach, following the inferior eurve of that viscusas far as the left: liypochondrium, where it sinks buek, and, hecoming bent upon itself, descends to the left iliae fossa. In the latter place it forms the sigmoid flexure, under eover of the small intestine, and thence descends the pelvis hetween the hhadder and sacrum, as the rectum intestinum. The sigmoid flexure lies loose in the left iliae fossa, owing to the free portion of the meso-colon by which it is attached to the spine. It appears, in some instances, formed of such ample folds, as in part to oecupy the pelvis. It. rests on the left ureter, the external iliac, and the spermatic vessels. Its looseness will explain why it is occasioually found to form part of the contents of an inguinal hermia.
Having examined the general relations of the prineipal viscera of the trunk, the parts which next claim attention are the vessels and nerves which supply them. In order to hring in view the vessels, we lave to remove the viscera in the following manner:-The heart and lungs are to he wholly taken from the thorax; the anterior half of the diaphragm is to he eut away; the stomaeh is to he divided at its esophageal and pyloric ends; and the whole intestinal canal, to the sigmoid flexure, to be separated from the mesentery. The liver is to be divided at its transverse fissure, and the forepart removed. While this is being done, the visceral arterics and veins in the several mesenteries, and the vena ports, may be noticed; and the symmetry of the vascular eentres, and their branches, will likewise strike attention, as they range aloug the spine. The arterial system of vessels assumes, in all eases, somewhat of the charaeter of the forms upon which they ramify. This mode of distribution becomes the more apparent, aceording as we rise from particulars to take a view of the whole. With the same ease that any picee of the osscous fabrie, taken sepnrately, may be known, so may nay one artery or vein, apart from the rest, be distinguished as to the phace which it occupied, and the organ whiel it supplied. The vascular skeleton confurns most with the osscous.

The aorta, like the spinal column, is eentral and common to both the thorax and the abdomen; it is the one thoracico-abdominal main vessel, and calls for a comparison, not only of its several parts, but of all the branches which spring from it. The aorta arises from the lelt ventricle on a level with the fourth dorsal vertebra and the middle of the sternum, and descends the thorax on the left side of the spine, and tbe abdomen on the forepart of the spinc, and terminates on the loody of the fourth lumbar vertebra. In the thorax the norta bas the eesophagus, thoracic duct, and vena nzygos on its right side. The four parts, and the nerves accompanying them, are between the lamine of the mediastinum. Throughout its extent the exact symmetry of the aorta is ns apparent as that of the skeleton. As the ribs and lumbar transverse processes jut symmetrically from either side of the spinal cohmm, so do the intercostal and lumbar arteries from the sides of the aorta. The viseeral branches are monlded according to the froms of the organs. As the tboracie viscera differ in form and number from those of the abdomen, so do the aortie branches, supplying each set, differ likewise in the same respects. In addition to the bilateral symnetry of the arortic system, I would also point to the analogy existing between the primary branches at its arch above, and those into which it bifireates below. This analogy is as evident as that between the upper and lower limbs, which they supply. On comparing the bracbes of the aorta given of froin both its extremities, we find then, as they appear in their normal character; differing as to number only; thus, while three branches-the innominate, the left carotid, and the left subclavinn,-spring separately from the arch of the aorta, to supply the liead and arms, the aorta, at its lower end, divides into two common iliac branches for supplying the pelvis and lower limbs. But when we take into account the varicties which so frequently appear among both sets of branches, we slinll find that the prineipal of them are simply an interchange-viz., that which is the alnormal order of the branches above, representing the normil order of branches below, and viee vers \hat{d}. When, for example, the two left branches of the aortic arch coalesce and appear, like the innominate on the tight side, single, then both, as innominate, correspond in form with the two common iliac. When, again, the two common itiae branches are divided immediatcly after separating from the aorta into two oppositc pairs of branches, then these correspond with that abmormal eondition of the branches of the arch in which those appear ns four in number, fiom a eleavage, as it were, of the innominate. The veins accompanying both sets of branches are usually identical in form. An innominate condition of the reins above, and a common iliac condition of the veins below, correspond to each other, and would seem to indicnte that this is the typical condition for the arteries as well as for the veins.

The aorta is similar as to form in almost all cases, but it frequently varies as to its length, measured in respect to the spine; and hence the length of the branches arising from its cuds will, at the some time, vary. From its arch, on a level with the eartilages of the second ribs, to its hifureation on the fourth lumbar vertebra, the norta diminishes in eariber according to the number and size of the branches successively given off from it. Its varieties, as to length, depend upon the following circum-stanees:-When the aorta, springing from the left ventriche at the nsual level, describes a sballow arch, it is low in the thorax, and the primary branches are in proportion lengthened. When the aortu forms a deep areh, it. is high in the thorax, and then the primary branches are shortened. The length of those branches may vary, even when they are in their nsual order, and the aortic areh at it susual level, for the height to which they rise in the neck before dividing will determine their length. When the inmominate arises from the middle of the ascouding part of the arch, and bifurentes opposite to or above the sterno-clavicular junction, the length of that branch is increased. In the snme mamer is the length of the norta and of its branches varied at its lower end. According as the norta divides above or below the fourth lumbar vertebra, it is itself shortencd in the former cise, and the common iliacs lengthened; or it is itself lengthened in the latter case, while the common iliacs are shortened. The length of the common iliaes is likewise dependent upou the phece at which they bifurente, though they arise liom the aorta at the asual level.

The ocensional existence of a sieth lumbar vertelia will wary the length not only of the amta itself, but of the iline branches.
The abdominal part of the aorta is alout a third of the kngeth of the whole ressel. Opposite the last dorsul vertelura the sbidominal norta appears in the span of the pillars of the rluphragm, ann termination in front of the lody of the fourth lumbar vertebra. From this short part of the norta arise all the branches whish supply the abdominal viscera. Compared with the visceral branches of the thoraric part in the aorta, those of the abdominal are renarkable lor their number and size-a fact readily accounted for when we consider that the latter vessels serve of her. purposes in the economy, besides that of the support anel repair of the structures to which they are distributed. The allulominal lranehes are large and numerons, in proportion to the great quantity of fluid matter secreted hy the glandular' apparatus, comprising the gasto-intestinal eanal, the liver, pancreas, kidneys, \&e. Like the thoracie aiteries, between and behind the pleure, those of the abdonen traverse this place belimel the peritomam, and between the layers of the several mesenteries. The aorta is behind the peritoneum, and is bound down by this membrame to the lumbar vertelure; in front of the aorta the mesenteric duplicatures are given off, and here they receive the arteries and branelies of the sympathetir nerves, and return the veins to the portal trunk, and the lacteals and lymphatics to the receptaculum chyli. The veesels of the gastro-hepratic mesentery, of the mesocolou, and of the omentum are between the hyers of the two peritoneal sacs; the vessels of the mesentery are between the layers of the single sac which forms it. The hranches of the abdominal norta arise fiom it, at very slort intervals, anterionly and laterally. The first of the anterior branches are the phrenic arteries, which ramify ou the lower surface of the diaphnagm, and give offsets to the supmaremal bodies. The second is the cecliae axis, giving of the hejnatic, gastric, nul splenic. The third is the superior mesenteric, brunching in a remarkalke looping forin to the small intestines, and to the ascendiug and transrerso parts of the colon. The fourth is the inferior mesenteric distributed in a simithe firm to the descending colon, to its sigmoid flexure, and to the rectum. All the urteries of the gastro-intestimil canal form a chain of amastomoses in the mesentery from beginning to end. The renal arteries mise Interally close to the origin of the superion mesenteric. The spermatic arteries arise either from the arota, or from the renal urteries. The lamhar nuteries arise from the zorta at its posterior aspect, and are in series with the intercostal. The common iliac arteries are in series with, and nnalogous to, the limbar. The mildle sacral artery, though being the smallest branch of all, is the truc temomation of the norta; and as such, is single and central on the hodies of the sacral and coceygetal vertchre. The two common iliae arteries diverging firm each other bifurcate respectively on the sacro-iliae junction into the internat iliae branch which supplies the pelvic organs, and the extermal iliac which passes along the brim of the true pelvis to the middle of Punpurt's lignment, where it gives off the circumllex-iliac branch to course as its name indicates, and the epigastric bramch which ascends the anterior abdominal wall between the peritonaum and the rectus muscle, in the direction of the unbilicus. The two common iliac veins recciving the external and intermal iliac branehes between the corresponding arteries, join and pass beneath the upper part of the common iliae artery, to form thic vena cava, whiels ascends on the right of the aorta, and, atter receiving the right renal wein on its own side, and the left remal win, crossing to it in frout of the aorta, is joined by the hepratie reins is suing from the posterior part of the liver, and finally enters the right auricle though the foramen quadratum of the diuphragm.
The kidneys are situated in the loins, opposite to each ofher, aml hehind the peritoneum. They are usually embedded in a large muss of adipose sulstance. They lic in front of the last ribs anm the yradrati lumboriun muscles. The right kidncy is in contuet hy it upper part with the liver, and by its lower part with the cecmm; the dnmienum and ascending colon touch its forepart. The lete kidney is in contact with the spleen ahove, and with the sigmoid flexure of the colon helow; the jejnnum and the descending colon lie in front of it. Both killueys

FIGURES OF PLATE XNII.

A A* $A^{* *}$, Thomeic and ablominn! anta-B B1 First ribs-C, Trachen-C C C, Bronchi-DD D, Clavicles cut-E. Osopplangun-F. Thoracio duct.-G, Vema naygos aud

ure liuble to dislocation from their natural position-the right one by an enlarging liver, the left by an enlarging spleen, in which ease either may he depressed us low as the iliae fossa. Each kidney is oral and smooth ut adult age, but often throughont life it exhibits traces of its early lobulnted condition, which is permanent in the lower amimals. On its inner horder the kidney presents a fissure to reeeive the artery and vein, and to give exit to the ureter-its excretory duet, which commenees by a dilated part, called the pelvis of the kidnej; in front of the vesscls, and thenee deseends behind the peritoneum over the bifireation of the common iline urterics to the bladder in the pedvis. The ureter is more adlerent to the peritonomm than is any of the vessels; and henee, by mising the membrune, it will always be fornd to follow. On the sumat of each kidney lies the sumpermull capsule, which couforms with the shape of the kidney, as if it were a part of this gland, but it is not. In the early foetul state we find the supra-remal capsule as purt of the entirety numed the Wolfian body; fout whether or not nt that time it has a use, nome has hitherto been reasonably assigneed to it at the adult period; for, thaggh glandulur, like the kidher, from all :ppearance of structure, it is leyeid of an excretory duet. I it a lymphatie body? Whaterer be its finction, if it have any, it seems to me not much more a mystery than the. kidney itself is, though knowing the later to be a true gland, in every ense of that term. The anatomieal condition uf the kidnes, and also its physiologitul has, are alike peculiar, when we compure it to the lung or the liver. The latter orgms, as crlands, are traversed by artenes destined to support their respeetive tissues, nnd by other vessels speeially serving to conver to each of them cortioniferous bload, the effete matter of which they separate and cast off. The kidncy, on the contrary, is supplied divect from the aoria with a single artery, ecmucting jure oxyyenated blood for the support of its own tissme, nad also for huring eliminated from that hood (which is fit to eireulate throngh the gland of thonght the braia itself) a puul-the wine-wbich is of so absolntely exerementitious a composition, that as soon as it is formed it is forthwith voided fron the body. A renal vein, nevertheless, returns the blood, thus deprived of urinous ingredients, and that hood is, to all nppespance, still the snue as the blood of the other syatemic veins.

A knowledge of the relative position of the thoracic and abdominal organs enalles us to aceomut. for certain jathological phenomena, whieh, however, we possess as yot but little skill to remedy. Thus, it woald appear most proballe, that many eases of ascites and annsarea are more frequenfly cansed ly a meehanical obstrinetion of the bloodvessels than by what we are tanght to be "a waut of balance between secreting and alisorling surfares." I stone in the gall-dnct is known to give rise to jumblice, by hindering the entry of bile into the duodenum. An alseess, or other tumour of the liver, moy, by eompressing the vema portse, or the inferior vena cava, eause serous effusion into the perifonmen in the former case, and anasarca of the lower limbs in the latter enze. In ascites the liver is genemally morbidly enlarged. Natter aocumblating in the sigmoid flexure of the colm may ennse a hydrocele or a vuricuecle, by pressure on the spermatie vessels. It is quite trme that these twe latter affections lappen more frequently on the left than on the right side; and therefore it seems to me more reasonable to uttribute them to the cirenmstince stated, than, as some do, to the faet of the left spermatic veins opening into the left renal vein at a disndvintageous angle. An ancurism of the aorta, or innominate artery, pressing on the neighhouning veins, canses edemat of the face and arm; if 'it obstrict the pulnumary veins, the lungs become congested. If the curdine veins he compressed hy the liypertrophied substance of the heart, cflusion iute the perieardium is the consequenee; and if this sac be much distendel, the fluid, eompressing the flaecid aurieles and the roots of the veme cave, will give rise to general anasaren, to hydrothorax, or to uscites, cither sepurate or co-existing. Serofnlous bronehinl, or mesenterie lymphatic bodies, may cuuse the same results. Tumours of the liver are wore commen than those of the spleen; and as the former organ has the vena pirthe mud heprotic artery entering its transverse fissure, the vonat cavip passing through a suleus in its thick posterior border, and the gall-duct issuing firmn it, the cruse of aseites, na well as jaundice, shonld be shught in relivence to thuse circomstanecs. When an abscess forms in the liver, it wilh, accordine to the diveetion in which it points, void itself cither into the thomax, or throngla the side between or heneath the false ribs, wr intu the stomech, the dnodenum, or the transverse eolon, wheh oryms are in contact with its under suffuee. The contignity of the liver and stomuch to the diuphrugm accounts for the "gastric" and "hepatie congh," whell thase organs are inlaned; the irritation being either divetly communieated to the musele froni them, or being the result of rettex hervons inflache. When burge biliary concretions forsu in the gall-luets, mature, finting in her efirits to discharge them by those

1nssages, sets up inflammation and ulcerative ahsorption, by which processes they rain a passatge to some part of the neighbouring bowel, either the dhodenm or the colon. In those processes the part in whin, the stone has been formed heeomes soldered by eflused lymph to the bowel, and thins the stone is prevented eseaping into the peritonaum. When the bowel is wounded, the part, in fortumate eases, is rendered, in the same manner, adherent to the abdominal parietes, and the intestinal matter is thereby prevented entering the peritonamm; or the bowel adheres to the lips of the extermal opening, and though this the matter is disclarged. The operation for artificial anus is founded on the same principle.

In cases in which the abdomen becomes so enormously distended by effused scrum, that it sppens not nore hopeless to void it by the free use of our mediciual dinreties and hydragogue eatharties, than it is to account for the condition by any fanlt of the serous membrane per se, then paracentesis by the instrumental hydragogue, viz, the troear and canula, is reasonably demanded. In performing this operation the following faets are to be remembered:-Fluid oeempring any of the cavities of the body gravitates to the most depending part, and, therefore, as in the sitting or standing posture the fluid of aseites will fall upon the median line between the umbilieus and the pubes, this is the line in which the puactare should be made. In the female, the ovary is frequenily the seat of dropsical aceumulation to sueh an extent as to distend the abdomen like aseites, and render the diagnosis doubtful. Ovarian dropsy is distinguished from aseites by the partieular form and situation of the swelling. In aseites the abdominal swell is symmetrieal whide the body is ereet. In ovarian dropsy the trumour is greatest on either side of the median line, aceording as the affeeted ovary happens to le the right or left one. The fluid in both eases affeets the position of the viseera differently. In nseites the fluid gravitates to whiehever side the body is inelined; it floats the moveable organs to the opposite side; and it then oeempies space between those organs and the parietes. The ovarian tumour is, on the contrany, comparatively fixed to its place; it permanently displaces the intestimes on its own side; its sae lies in contact with the parictes; and neither itself nor the intestines will change position aceording to the line of gravitation. Those eireumstamees, however, though serving to distinguish buth forms of dropss, do not afficet the propriety of choosing the site for the operation at the place specified; for, thougll the peritomal fluid displaces the movenhle viscera, it does not influence those which are fixed, riz., the liver, the stomaeh, the spleen, and the kidneys. Whether the dropsy be peritomeal or ovarinn, it may be most safely voided at the linea alba, below the umbidieus, midray between this point and the pubes. At this situation the epigastrie artery may be avoided; here no important visens is to be found; and here the fluid gravitating eomes nest to the abdominal wnll, and interposes itself between that part and the small intestines, which camnot approach the point of the instrument nearer than the length which their mesentery allows. Having made the puncture, it heeomes of the utmost importance not to urge the evacuation of the fluid by mamal coupression, but to let it flow in the measure in whieh the resilient abdominal parietes will allow it, and no more. The state of syneope, sometimes fatal, which follows eomplete evacuation, is owing to the bloodvessels of the aldomen having lost that support whiel for a considerable time the presence of the Huid gave them, and to which their eireulation accommodated itself. The abdominal plexuses of the sympathetic nerves are also affeeted by that change; and when it is recollected how lax the parictes must be after previous tension, it will be evident that they cannot aceommodute themselves to the abdominal organs, when the fluid is suddenly and entircly voided. In pregnaney the abdomimul parietes are in the same manner stretched and elongated; but in 1arturition, after the exelusion of the fretus, the solid mass of the uterus remains to be redueed in volune by the slow process of absorption; and in the interval those parietes as slowly regain their original form and dimensions.

The abdomen, owing to the absenee of osseons parts in its parietes, is more exposed than the thorax to penetrating wounds; but from the pliability of its walls, which allow of the thorax and pelvis to approneh almost iu contact with eaeh other in the various anterior flexures of the body, it scenres in some respects its own defence. The physical influences which result from wounds of the thorns as a pneumatical appratus, do not :ttend rounds of the abdomen: wben air enters or blood is cllused in the thoras, respiration is inpeded, for the rigid walls of that cavity being incapable of aecommodating themselves to the surplus matter, cause this to compress tbe viscera; hut the abdominal walls are so dilatalle that fluid beeoming ettused in their eavity to the grentest extent will not, while it is diffused generally through the inter-

stiecs of the visecra, interfere with the functions of these. The lungs are so constituted in respeet to the thorax that it is not possible for a sharrp-pointed instrument to enter the costal pleura without wounding the lungs, which are in as close apposition with that membrate as if both were structurally joined. To this eircumstance is to be aserihed the chief danger from thoracic wounds, If it were possible that in sucls aceidents the plenra alone suffered simple lesion, surely, judging from the anatomical nature of that membrane, there enn be no reason why it should be attended with worse consequence than the like injury to the integument. The same remark (if true) must apply to wounds of the peritonæum-a membrane in all respects simdar to the pleura. But unlike the hugs in relation to the thoma, the intestines in relation to the abdomen are of that form which maly admit of an instrument penetrating the peritonamm without themselves being involved i and these are the cases which often to the surprise of the surgeon recover. The intestines owing to their mobility, their form, their membramous strueture, their hollowness and their compressibdity, are so readily detachable from the walls of the abdomen n_{1} that they yield before the edge of the sharpest instrument, if this do not enter the peritoneal hining beyond a certain degree. Moreover, it is possible for the instrument to pass into the abdomen for even an inch or two between the convolutions of the intestines without injury to them. In their state of distension, however ${ }_{1}$ this immunity from danger in those accidents is much lessened, and particularly so in regard to the stomach. In judging of the extent of viscenal injury from abdominal wounds, the thickness of the parietes and of the omentum should be taken into nceomit, for in diflerent subjects the quantity of adipose substanee in both parts greatly varics. The way in which the instrument has passed should also be considered, lor direet penetration, though to a less degree, may wound the viscera more eer. tainly than oblique penetration to a much greater extent. The fatality which so often results from abdominal wounds may be nseribed in most enses, if not in all, to a division of the coats of the bowel or stomach, followed by extravasation of the intestinal matter, or to n wound of oue or other of the solid vascular organs. For as to the danger incurved by simply ineising the peritonæum, the operative measures undertaken, and neccssarily involving that membrane, sufficiently show that this is a question which still and for ever may be left without mueh loss under debate with those pathologists of the infinitesimals who would essay to diagnose by the pulse between inflammation of either of the three conts of the bowel, and thereupon ply their pharmacy. While we see how gored dogs with their numbles (otherwise minjured) trailing the ground, yet recover, (and who shall say that betwcen their organixation and our own there exists the differchee even of a gossumer?) we may well agree thut to other causes than the opening of a heruial sac the supposed danger of that oecurrenee is due.
The position of the external wound does not in all cases indicate with eertninty which organ of the abdomen lins been injured, if any have been. The direetion in which the instrunent has penetrated can ulone determine this. Butif the body betransfixed, then the line hetween the two wounds being straight, tells of the organs throngh whieh the instrument must have passed. If a small sword transtix the body throngh the middle of the seventh or eighth intercostal spaces, it will enter the hase of the thorax on both sides, and the summit of the abdomen in the middle: the organs which will have been wounded in that eourse are the opposite lumgs, with the liver and stomach between them, and also the spleen, if this happen to be larger than usual. If that instrument pass through the body from any point between the xiphoid cartilage and the mabilicus to the tenth or eleventh dorsal vertebra, it will traverse the stomach in the abdomen n_{1} and enter the thorax at its posterior middle line, where the great yascular trunks are situated i_{i} hut if the point pass on either side of the spinal colnmm, then the plenra and lung will be injured. From this the relative forms of the thorax and abdomen may be known. The correspondence of the external wound to the place of any nther of the abdominal organs will, when taken with the symptoms peciliar to the lesion of that organ, indicate which is the one that has suffered ingury.

The abdominal norta has in a fea instances been the subject of deligation i and truly, those must have been such extreme unses, tup of for the operation, that to tie the aurta in the thorax would secm but little less justifiable, To arrest the circulatiou in a vessel that sumpurts one thalf the body, minst indeed be a last experiment in surgeery, nos withstanding thut our natomical knowledge would appear to pive us hopre of success from the measure. So many and sulh large luanches mise from the abdominal aorta, and these are set so elosuly ogether, that if it be true that sueh a condition is unfavourable to the operatim, the objece. tion is in full force in all instances. But, then, it is from that very condition of the brancles that we muy judere of the possibility of a collateral circulation being maintained after the ligature is spplied. When tor an anemism involving the common iliae artery, the: abdominal ourta is tied nt a point between the origins of the superior and inferior mesenteric branehes, where it would be below the renal arteries, the direct eirculation must then be arrested in and aroned the pelvis and its organs. and also in respect to both the lower extremities. 'To supply this want, the principno of the anastomosing branches are these:- the internal mamuary and intercostal arteries, with cach otler in the thoracie, wind with the epigastric and lumbar arterica in the auterior abdominal parietes-the superior and inferior mesenteric arterics with each other in the left part of the meso-colon; and the duscending branches of the latter vessel with those supplying the rectum from the internal iliac nud the pudie-the lumbar braneles, with the ilio-lumbar, flom the interant ilise: and he latter with the cireunflex dii and the gluteal around the hip-bone. 'The spermatic arteries are of man account in recaud thanastumosis, fur they terminate in the testicles, and are there isobuted; but in the female the corresponding anteries supplying the ovaries amastomose with thase of the nterns. Now, considering that these are the only channels for carrying on the circulation through the lower half of the lindy, and that even the amount of their anastomosis, :above-mentioned, is not to be calculated upon as invariable in all eases; and considering, moreoser, the formithuble nature of the neasine necessary for reaehing the norta at the bock of the aldomen, belind all the riscera, it may, 1 think, be fisirly suid that the surgeon who would attenpt this operation with any expeetation of "1 suceesslinl result, officiates only as the ready minister of Finte hy severing the vital cord, which is already beiug stretched to cracking from both its ends. The operation has been tried in two ways:-one by mincision through the anterior median liue at the umbiliens, oppwsite which the aorta bifincates; the other by an incision iu the iliac recrion. Of the two methods, anatomically considered, the former would seem preferable for these reasons: 1 st t_{1} The anta, borme formards hy the lambar verte. bre, cones closer to the anterior parictes than it ever does to the crest of the iliac bone. 2nd, The parietal peritonzum needs only to be simply divided along the linca alba, to allow of the small intesines being mrolled and the root of the mesentery renched, where this part is atticheed to the norta; wherens by the iliae ineision it lecomes necesary to lift and separate from its supportiug capillary vessels the peritonoum, to an extent reuching from the iliae erest to the lumbar vertebra \rightarrow measire which in order to inaintain the integrity of the menubranc, must deprive it of its vitulity.
The common iline artery has several times heen tied (in a few cises with a degree of suecess sufficient to wurant future trials) for u wound of itselfi and for an anemrisan of the extumal or internul iliae bramelnes. The eommon iliac necopies a positiou scurcely hess accessible thum the norta, and as it requires the sume dissection of parts to reuch it, the fact of the operation being promising in reapect to the iliae resect, and not to the aorta, uust be due to the form of the iliac, and particularly to the circumstance of the direct circulation, when arrested in it, affecting only one half the petris, and its organs and one limb. The usunl lengils of this vessel is from the middle of the fometh lumbar vertebra to the sacroiliae junction; but its kength varies, as already mentioned, necording to the place at which the norta or itself bitureates. Whatever be its length ${ }_{1}$ it seldom or never gives off branches, but it is so complicuted (especially it seldom or mever one) with its accompanying large veins, as to cause a difficulty

FIGURES OF PLATE XXIS

$A A^{*} A^{* *}$, Thomeio nad alklowinal norta.-B B, First ribs-C C, Scoonil xibsD D. Clavicles sut.-E, Sterno-mustoid tuuseles cut.-F F, Pectoralis major uuscle

 vas duferena
in insulating it from them. It is invested almost completely by the peritonomm, which, adhering closely to it, may be regardud as its outer cour. The right artery lias its win close to its inner side. The left artery has its vein separating from it to join the opposite vein, under the root of the right artery, where the two veins form the cummencement of the vena cavn. Each artery ranges along the inner border of the psoas muscle, which is more bulky and prominent in some individuals than in others. The lumbar nerves, which form the anterior crural nerve, are embedded in the psoas muscle, and not in connexion with the vessels. The areter deseends loose and flexuous upon the psoas and behind the peritonreum to the point of bifureation of the common iliae artery, and here passes over it to the hadder in the pelvis. When, by a ligature, tbe circulation is nrrested in the common iline artery, there are (besides the unastomosing branches, named in regard to deligation of the aorta) the hranches of the vessels of opposite sides conmunicating freely with each other in und around the pelvis, and in the substance of the petvie viscera. All the branches of the intermal iliac arteriss inosculating on the rectum, the binder, and across the perincum, and (in the female) on the uterus, ure then in full foree for the support of the parts on the distal side of the ligature; and hence it is that, though the eommon iliac artery is but little less in caliber than the end of the aorta, the sucecssful issue of the operation on the former vessel is more likely to be realized. The amount of anastomosis is not affected by any of the amomalous forms of cither ressel.* The incision wbich is recommended for exposing the common iliae in the operation, is one which, commences about two inches above the iliae spinous process, and boing carried parallel with, but an inch above the onter thisd of l'oupart's ligament, terminates opposite the middle of the inguinal fold. The museninr substance of the three abdominal miseles, together with the transversalis fascia, will here lave to bo successively divided, and after this the peritomeum will have to be raised from the iliac fascia over the iliacus musele, and also from the psoas nuscle. The membrane as realily admits ol' this proceeding in the living as in the dead subject, and carries with it the ureter and the spermatic vessels. As it is the peritonemm which fixes the coceum to the iliae fossa, that git manst of course be detached from its seat with the membrane; and this certaninly mist be a matter of no trifling moment. Besides this, considering the depth of the artery from the external opening, and the great ilifticulty of reaching it heneath the incumbent weight of the bowels, it, would seem to be the more ready mode, and certainly not a more dangerous one, to expose the ressel cither from an incision at the umbilicus, as is recommended for tying the nortn, or at the linea semilunaris, which is opposite to it. For 1 hold it to stand for reason, that so long ns it remains unproved that opening the peritoncum is the enuse of all, or of uny of the prineipal evils supposed to attend that oeeurrence, a simple incision of it camot he productive of such ill consequence as peeling a large tract of it from the surfaees of its support. However this may be, as the abdomen is the arenaf for 'hemoie' operative surgery, the two following operations may in this place lave a brief anatomical notice.

1lysterotomy' and ovarintomy are two operations which cannot be perfirmoed withont extensively incising the peritoneni sae. The nterus and its appendages the ovaries are completely invested by the peritonaum in their natural slate. When either of those organs hecomes enlarged, it lakes from the peritonmma covering the measure of itsonn proportions, just in the mmer of nll the other abdominal viscera. The gravid uterus and the enlarged ovary ocenpy abdominal space at the expense of the other viscera, whicln they displace from their original position; but this is compensated for lyy the anterior parictes of the abdomen, which become not only relaxed and stretched so as to allow of the anterior bilge, but are actually elongated by superadded structure. The uterus occupsing originnlly a median position in the pelvis, where it las the bladder before it and the rectum behind it, rises from ont of the pelvis nccording as it
increnses with its contents, and takes in medion position also in the abdomen, having its own mesial line eomesponding exactly with the linent allba, close to which it lies, and displaces the small intestines by its smmmit upwards, mid equally to either side of it. In this natural periodical process of incrense, the uterus but imitates the development of all the abdominal organs in respect to the serous sac whieh covers them; it brings itself in elose apposition witb the parietes; but the touding visceral and parietal parts of the peritoncum are (under a prospective regard for the exigencies of parturition) prevented forming adhesions. The ovary placed laterally in respect to the general median line, still oceupies that positions thronghout all its stages of enlargement, and according as it is the right or the left one, it forces the moveable viscera from its own side to the opposite. In some instanees the ovarian sae has been found of sueh large dimensions that besides foreing the abdominal parietes anteriorly, it has greatly eneronehed upou thomeic spree by elevating the dinphragm. As the enlargement of the ovary is the result of diseased action, the part is most liable to contract adhesions to all adjacent parts, through the medium of the peritonæal membrane. In this way, the tumour may assume a multicapsular appearnnec; but wbether this be the cause of that form in all instanees, or that it results from the dilatation of Graafinn vesicles, it is difficult to determine. Regarding the ovary as the analogue of the testiele, the former would appear to be the eause, for we find the lyydrocele of the tunica vaginalis occasionnlly multilocular-a condition evidently duc to this circumstance. From the position of the diseased ovary, even while it is of a size not to interfere with respiration, or with tbe functions of the liver, stomach, \&e., it may be judged how much it will interrupt the fiee circulation of the iliae vessels. The pressure of it (especially when it is formed of sobid matter) against those vessels, is the cause why the lower extremities become cedematous, and their veins varicose. If the ovarian tumour be on the right side, it is liable to obstmet the passage of matter into the cercum, fixed as this part is to the iliac fossa. If the tumour be of the left ovary, it will obstruct the sigmoid flexure of the colon or the rectum, and thus produce, in either casc, that obstimate costiveness whieh all the purgatives of the pharmacopeia cannot obviate.
The operation of excising the ovary is admissible only in sueh eases as when it appears to be a circumseribed moveable tumour, witb solid parictes. If it be a meve nembranous cyst of large dimensions, and extensively adherent to surrounding parts, it would no more ndmit of extirpation with safety to important organs, than would the peritoneal sac for an ascites. The incisiou through the abdomen, for exposing the ovary or the nterus, is recommended to be made along the linea alba. 'This sitnation will be at once seen to be the one best suited for hysterotomy; for the middle line of the uterus, along which that organ is to be incised, rests immediately against the linen alba, and it is at the middle both of the abdomen and of the organ tbat the fewest and smallest of the bloodvessels course. The two epigastric arturies ascending behind the recti muscles do not largely communicate aeross the middle line; and the same may be said of the opposite uterine arteries, arising from the internal iliac; and the ovarian arteries, from the aorta. But with regard to ovariotomy, the incision, if made along the linea semilunaris, would better enable the operator to bring in view the ovary, and safely unseat it from the iliac fossa, and disconnect it from other organs. If, for this purpose, a lateral transverse incision were needed, it would coincide with the direction of the fibres of the broad lateral museles. In this place, Lowever, the epigastric artery would be exposed to danger, if the incision were carried near Poupart's ligauent; but perhaps it is ncedless in this operation to notice so trivial an evil as hamorrhage from an artery of this sizc, with the nbdomen opened, and every facility for securing the ressel at hind.

Whatever may bre the mumher anil kind of verintions to which the brumelwes artiong fron hodh extromes of the gorta aro limlile, ull anatomists adnait that the urrangenent of

 that it which the left vertelmal artery aroso from the aorth of other varictics described lyy anthas, he olserves- "Raya wero limeo omain veso si dixero oums quadringenta mune culawpra himana disucuerim, fiden furte inveninm." (Icoues Anatom.) This variety is
 Fabrica), Boyer (TY. 11 Anat.) nul Mr. Iffrison (Surg. Anst, of Art.), to be the ravet

 oft the Arierices der.) A euse in menorded by Poteche (quated in Fuller), in whitit he atales the Lifinreatiou of the mata tu have tuken phes at the migin of the reunl arteriea: (ugnery)
are we to suppose that the reabal arteries mesont their newal pasition 1 Cruweilhier recorda a cuse (Aunt. Descript.) in which the richt common iline whs wanting, in consequenee of huving livided at the goita into the internal and extermal ilias brauches, Whether the knowhalge of these and ummerous othor varicties of the arturial system he of mach "prictical" ingort to the surgeon, he will deterinize for himself. To tho soientific anatomial, it must nppere that the muln object in rogard to then is to subouit them to a strict anulogical reasoniug, so as to demoenstrate the operation of thont law which has aroduced
 from both extromitica of the aorta. With the same viow, and in the hope of lighteuing
form then this dull and weary detail of mere desoription, X lhuve (under the guidnace of tho laws of symmetry and pecrina horaology) monde lariof mention of the sirnilitude which comparioon showed me to exint between other parts of the body. "Itaque convertends plane est opers aul inquirendos ot uotandas merum similitudines of amioga tams integrailims quman partibus ; illae cenis sunt, quee nutnrum uniunt, et constitnere scicotius ineipiunt." " Naturn
 tione instar regulue est." (Nuvua Organum Selicutiarmin, Aph, xxvii, xxviii., lil. i.)

The mechanism of the thoracico-abdominal apparatus can only be fully appreciated by considering that apparatus and its eontained organe as a whole. The correllation of the several parts of its parietes and of the organs to those parietes and to each atber, invite to this view. The action of a part is not originated in that part per se without the consent of other parts. The act is a reciprocating nisus of two or more parts, and so is it with respeet to the function of an organ. The organ is functional as much by reason of its relationship to other organs as by its own special form and structure. In the allocation of organs, therefore, no less than in their presential respective characters, is design visilhe. If an organ functional as it is $_{1}$ would be inoperative in any other situation than that which it normally occupies, it follows that its function is mainly dependent upon the relative position which it naturally has. In that position of it a final cause is expressed as plainly as in its other conditions. And just as in the word phenomenon, the orthography is essential to the meaning of that word, and the disarrangement of its letters is amnihilative of its meaning ${ }_{1}$ so is there a menning in the disposition of the parts and organs of the thoraeico-abdominal trunk, which, unless contemplated in this light, we fail to understand as much as the hody itself would fail to enjoy the result, if that disposition of the visceral letters of the organic word or form were otherwise than what obtains Form as it is normally is form as it has been fittingly ereated according to a preconceived design to effect certain definite purposes. What those purposes are, the form as it is, compared with the form as it is not, will best explain, and enahle us to traee the creative passages of the artificer.

The trink of the body is of an elliptieal form, the upper end of which is represented by the first sterno-eosto-vertebral circle and the lower end by the bones bounding the pelvic outlet. Its longest vertical diameter is tbrough the median line ${ }_{1}$ its widest transverse diameter is from one hypocbondriac region to the other. The thorax is always the compart ment ahove the transverse diameter; the ahdomen and pelvis forming together one chamber, are always below it. The diaphragm is situated in a plane corresponding with the backward and downward slope of the false ribs, and divides the thorax from the nbdomen. When (not to pass beyond those anatomical eonditions whieh appear sufficient to illustrate the mechanism of the human trimk) we compare all forms which exbihit a thorax, an abdomen, and a pelvis in the order notieed, we find them all exhibiting bdateral symmetry, whether rihs range along their sides from neek to pelvis, or only constitute a thorax above the transverse diameter The result of this hidateral symmetry is a similarity of action hetween the opposite sides of the thorax above and those of the abdomen helow. When, again, we compare those forms as to their superior (tharacic) and interior (ahdominul) halves, we find that their dissimilarity is owing to the presence or alsence of the rihs in the abdominal half, and that according to the degree of degradation of the rihs in this situation from their fully-developed quantities to their smallest, does the degree of the dissimilitude appear. Since, then, in the hmman form we find no greater difference between a thorax and an abdomen, in respect to costal quantity than we find between the abdomen of one aminal (Saurian) and that of another (Afamalian), since the human thoracic sternal rilhs degenerate serially into the abdominal asternal ribs, and the quantitive difference between costal forms, whether shielding tbe aldomen or the thorax in all classes of vertebrated animals, is evidently owing afone to metamorphosing degradation-it hence follows that in respect to the presence or absenee of the rihs are the functional differences of a thorax and an abdomen to be ascertained. Upon this fact as a substratum all ather facts illustrative of the design will he found to rest as thus:-We view the thoracico-abdominal apparatus, of the form now noticed, to he indica. tive not only of the motions which itself can originate but of those which it can communicate to the several organs contained in it. We see that
all parts of the form, from the root of the neek to the perinanm, serve in the respiratory movement. We see that motion to be dhythmical, and the result of two distinet but successional actions,-viz, inspiration and expiration i and we reasonably infer, $\begin{gathered}\text { p priori, the existence of } \text { two dis. }\end{gathered}$ tinet hut consentaneous agents to cflict it; forasmucl as it is not in the nature of one organic motionary form to be actively contractile and actively relasant. From the fact, therefore, that neither the thorav nor the ahdomen can be active in both modes, inspiratory and expiratory, it must follow that whichever of the two actions the one part serves, the other action is due solely to the orlely part. Since me find the thoracic parietes are evidently inspiratory, then the aldominal parietes umst he the agents of expiration, for it is demonstrable anatomicully that if the whole trumk from neck to pelvis were costul, like a thomex, erpivation could not be performed; and it is equally clear that if the whole trunk were non-rostal like an abdomen, inapivation could not be effected. Hence we must regard the whole trink as the regivirutury apparatus, although it is the thorax nlone which contains the lungs. And hence, while we acknowledge the ubdeminal form to he necessary to the thoracic fir effecting the respiratory motion, and while wer sec at the same time that each form is in suit with its proper viscera, and the motions of it as a recipient not ouly obeyed by the received, but the motions of the viscera of one compartment obeyed by thase of the other, thus illustrating how from one cansative force-the respiratory, may flow a plurality of efficets equal to the mumber of the organs contained d_{1} and various as are their several functions; we the more must marvel at these results, the simpler the means liy which they are produced,-viz, a hiatus in costal series which is an abdoment.

The thoras is eanstructed to perform hut one kind of active mation.viz., dilatation. Its contraction depends altogether on its own clas. ticity, aided ly the action of the ahdominal nuscles. The inspimtory muscles are all thoraeie, and camot, therefore, be expiratory; the expiratory muscles are all nodominal, and this is the natural classitication of them. The inspiratory museles have that action hy reason of the presence of the costal circles, which are so many levers made to operate on the vis inertius of the organs cmunaced by them. The expiratory muscles have their own action in consequence of the alsence of the costal eircles, by which they hecome depressors of the thorax and compressors of the abdomen and thorax at the same time. In this reeprocating motion of the thorax and abdowen we may see that the action of their respective class of museles is like that of flexors and extensors in so much that the contraction of the one class is olueyed by the inaction of the other, whade the motions of the diaphragm plaeed midway between them, answer to hoth. The diaplragan, when in action, is a muscle of inspiration in respect to the thorax, and of compression in reference to the ahdomen. During its passive state, it is altogether under the influence of the museles of the abdominal parictes, which; hy compressing the abdominal viscera, cause it to assume its arched form in following the recoil of the lungs in expiration. In ordiary respim. tion, the cupacity of the thorax is chiefly affected by the action of the diaphragm and aldominal muscles. When the diuphrugm acts it increases thoracic spree by becoming tense across the thoracic base; und in order to allow of this, the ahdominal parictes relax and yield to the downward motion given by the diaphragg to their contents. In foreed respiration the same occurs, but with an increase of thoracic netion. Considlering, then n_{2} the mechanical principle on which the thoracicoaldominal apparatus is constructed, the most promiuent featire appears to be that of cmbling either half of it, at the expense of the other, to adjust. its capaeity to such exigence ns its own urgans impose on it ; and the relative position which they have allows of this compensatory action. When the imspiratory thoras gains space trom the abdomen by the contraction of the diaphragm, the expiratory abdumen resumes that space

FIGURE OF PLATE XXV.

Hustratiug the netion of tho thomeico-aldominal appanatus as atlecting the motions of the contanined visartion of tho thomeic-abienit septum of the heart thomcie centre, ns the fised point

 cava, bet of the
 de gree of thair expansion in that direction, cticicting by traotion from the enrdina copptum, tho degree of their expansion in that direction, cticting by expuusiou of the lungs, ounbed hy nction of the diaphrngn; and effecting the heart's diastolo in this linection, syychronoonsly
 to tho
manes olewing togrther on puewantic priciples and thendyy tringing tho heart woder tho inflience of thencie inspinatory traction, throngh the nomdinno of the exponding hagg $-\mathrm{H} \mathrm{H}^{*}$, H \mathbf{H}^{*}, Liucs of obligue downwnal procesure, acerted by the entiate contractiag

 - If is M , Small iunestines - N N. Distendell urinary bladder under prasure of tho

 sce Connuentary ATY.)
from the thum by an merard force exerted on the passive diaphragm To this mutuality of the action of both eompartments we find that their replective nigans contrilute. While the organs of respitution nud circtIntion can alone perform their finctions in a thome, their presence theme is neeremsary to the dre prefinmance of those of the abdeminal orgmis, and vice motsid. The hugg require an abdominal apparatus and its contents for their expiration, as mach as they require a thomcie apparatus tor their inspiration; and for all the expulsive efforts in respect to the nlelomimal organs, the combinel nction of at thoras and an abdomen is equally neecesary. But the accommodatory netion which, for the purpuse of respiration is mutual between the thorax and nbdomen in all states of their capacitirs, ilvolves prineipally upon the ablomen when an incernse of space is demaneled by its digestive and its other receiving viseern. The thomecic organs encasel by the resistent ribs ean dilate and contract to no greater degree than the thoracic parietes allow: and the nir which the lunge inspire during thomeic expansion is in turn expired during thomacic contraction. But the ingesta of the alimentary anal mpluiring a longer period for their conversion to the wants of the economy, and the alditional space which they occupy being required tor than time, we sre the necessity for the ahdominal parietes being con structed of musculur materinl, which, while it enn relax sufficiently for the grain of surh space, is still active as ever for the command over the viscera. Premancy, a nommal state, and ascites, a pathological one, are well-murket examples of to what extent the abdomen can yield, so ns not to interfure with thoracie motion or the functions of the lungs anul henit.

Now if (while acknowledging, according to the cridence of their nnatomical coulition, that inspiration is the sole net of which the thoras is capable, and that its expiration is altogether due to the action of the abdomen,) we turn to ingnire what are the motions of ectnin of the viscera Which are possibly lue to the action of their containing chambers, we shall the hetter be emilsled to discriminate those motions from those which are originated by the viscera thenselves. An organ which, like the limg, is not masenlar, amb which, nevertheless, is distinctly and eminently expansile aurd collapsable, connot he motionary, per se, and hence its motion innst be due to the parietes of its containing chamber, to which (as notieed in a former place) it is connected on pheumatic principle. That the thoracic wall is the motor agent of the inert lang is not doubted hy any: if it ndunitted of a douht, the entire truth of the proposition is provable in rasis of thomacic bigmy. Bent an organ which, like the henrt, is numistakably muscular, must have un action of its own, independent of other usency: Being muscular, I maintain that the heart cannot manifost of itself hut one action, viz., contraction-systole. Being muscular, the heart, after its systole, is passive. During its passive state the heart is in diastole, callibiting the motion of dilatation. This motion camust be owing to any power in the heart itself to effeet it, und there. fure it mast he ascribed to other agency. Because then the heart's actise lilatation seems to me no less a contrudiction of terms than would its passive contruction, because the latter tem is monsense, when applied to designate the heart's systole, and the former term is no less imapplicalle to the lanot's diastole, 1 hnve (Commentary XIV.) nssigned the dilative force, glerating for the heart's diastole, to the thomeic parietes. That these are the agents of the lieart's diastole I see no more reason to donht than that they are the canse of the expunsion of the lnngs; fire the ennse which is potential for the effect in the latter case may be so for that in the formur, med therefore is, so long ns it is impossible for the heart to be active for that motion. In the relative position of the heart. let ms leok for the final eause, for, if such couse be not discernible in such pusition, there is no reavon why the heart wond not as well perform its function in the place where the stomach is. The thorax is donble, and hoth its silhes act from the eentre against each other. In each thoracic compartment, a lung, enveloped doubly ly a pleura, is posited. Between the two lungs is placed the lieart, enceloped donbly by a membrane similur to a plenra. "pon the diaplagatin rest the heat and lungs, and hath orgnas alike obey the action of that muscle. The thoracie sides nit against cach other from the common centre, aml the expansion of the langs is the effect. The henet, a hollow, dilatable organ, ocenpirs that centre, and why should it not obey the same expransile influcace throngh the mediun of the lungs? The diaphragm acts from the therax to the ahdonen syachromosly with the action of the thoracic silies, aud why shond not the expansile cficet produced hy that mnsele on the huys be alan exerted ou the flaceid hollow heart so as to threaten vacum in it, and move the venous bloul to ocenpy that woum?
Now (withont having reconse to mutinting experiment, which, ly (rippling natme; too witen leads to lame infercnces) it would uppenr
that with the same case that we may, by renonium
condition of the thoracic orghus, determine truthfully what is the source of their motions, si) also in respect to those of the abdomen. In the thorax we see nll the space occupied by hollow permeable organs, whichas such must obey the netion of the parietes. In the abdomen we find solid, inert, non-muscular organs, viz., the liver, spleen, and kidneys, \&cc., placed in apposition with others of hollow form, viz., the stomach, intestines, bladder, rectum, and uterus, which have muscular tissue as an element of their composition, and hence must manifest an independent motion. The solid organs may he regarded under present notice as entities, having no motions lont those of the parietes with which they are in contact, and serving only to bring the hollow organs into relation with those parietes, and under their indirect influcace; and, if from no other circumstance than the fact of their being under this influence, we were to infer that their own inherent actions were not adequate to the required functions in which they play their respective parts, such conelusion might be drawn with nppurent, reason. But the contractile power of any noscular organ, whether vohntary or involuntary, is al ways indieated by the qunutity of muscular tissue which it possesses. The henrt's systole is powerfal in the degree of its muscularity, the same as the action of a pectoral or gastroenemius inuscle is great from the like circumstance. Accordingly, when we examine the hollow abdominal organs and find them composed of so small a quantity of muscular tissue, at the same time that we hear in mind the powerful efforts which are necessary to be made for the expulsion of their contents, it cannot he supposed that the action of other agents than themselves are not necessary to their function. But who that has ever considered this subject with the body of living nature in the act before his senses, can for a moment maintain the contrary opinion?
The muscles of the thoracicorabdomiunl apparatus lave an involuntary and a voluntery action, while the action of each of its muscular viscera is altogether ineolunary. The respiratory motion requires the alternating nction of the muscles of the thorax and those of the abdomen; and all other motions of the trunk which have reference to those of the visecra are performed by those muscles, and consequently resemble, in some mode or oilier, the respiratory wovement. Whatever he the kind of motion excited, if snch motion oceur involuntarily, we fud we can imitate it voluntarily, and, in both instances, it is the very same system of museles which act. While, therefore, the effect is the same, whether the cansative action be at will or otherwise: while we know that, in either case, it is the museular parietes of the apparatus which do act, and while, morcover, we are aware that the viscera are out of the control of the will, it would seem a reasonahle presumption that the viscera are little else than as the inert suhjects to that active force which originates in the parietes to effect such results as those of the sudden voiding of the visceral contents. In support of this conclusion we shall find parietal mechanism to nnswer in all respects, while the contained viscem hold their normal relative position. The diaphragm is of that form, and holds that situation which euable it during action to operate on the viscers of the thoras and ahdomen at the same time. By reason of ξ^{\prime} its transverse position between tlre false ribs, and its low humbar origin, it ean antagonise the thoracic and abdominal inuseles. The effect of its action is to flaten the arehed form which it has when relaxed, and in the measure of this teasion, and of the corresponding relaxation of the abdominal parietes, the thoracic space hecomes enlarged withont affecting the abdominal viscera. But wheu, with the action of the diaphragm that of the ahdominal museles also occurs, the lines of forec originated by the one are opposed hy those of the other; and the result is a general compression of the abdominal viscera. According, then, to the direction of any one line of compression, according to the viscus to which that line is incident, and also aecorling to the state of that viscus, does this undergo forcible compression likewise and eject its contents. The viscera are so compacted in the relative position which they have, that they must transmit the line of force to whichever one is the sulject of it, and, especiully, if they and it he in a state of distension. The stomach, situated between the diaphragm and the epigastrium, and the intervals between the three parts being ocenpied by other organs, must, therefore, suffer compression from the simultaneons spasm of the muscular parietes: and if the organ be in an atonic condition with its cardiae orifice open, and the predisposition serving, then it will void its contents. It is by the same mechanism of the parietes, and their capability of altering the lines of force in varions directions, that the expulsion of the contents of any other of the abdominal orguns (the urinary bladder, the rectum, and the pregnant aterus) is to be explained. In each of those several acts the body instinctively assumes an attitude which best suits for giving effect to the line of force in respect to the organ which at the time is in necessity.

COMMENTARY ON PLATES XXYI. XXVII. \& XXYII

THE SURGICAL DISSECTION OF THE SUPERFICLAL AND DEEP STRUCTERES OF THE INGUINOFEMORAL REGION.

llernial protirusions are very liable to occur at the groin, and this it is which has led the surgeon to study with more than ordinary care and patience the anatonncal relations of the structures forming this part. So mimutely has he dissected every structure proper to this locality, nud so closely has he investigated every possilale condition al it as being the seat of hernia, that the only novelty which now remains to be songht for is that of a simplification of the facts already known to he meb obscured by an unwieldy nomenelature and an useless derail of trifing evidence. And it would seem that nothing ean more directly tend to this simplification than that of viewing the inguiual aud femoral regions, not separately, but as a relationary whole; for as both regions are blended together by structures which are common to both, so do the hernise, which are described as being proper to either region, oecur in such close eomexion as at times to render it very difficult to distinguisb between them. Their operative treatment cannot be safely uudertaken unless the diagnosis be correct.

The human species is, of all others, the most subject to hernid in the groin. The erect attitude of the human form and the fact that most of its more powerful muscular efforts are performed in this pusture, canse its more frequent liability to the accidents in question. The viscera of the abdomen occupy this compartment completely; and, indeed, they naturally at all times suhject its parietes to a state ol tension, caused by their pressure, as may be observell by their escape from the abdomen in cases of wounds of this region. In the crect posture the visceral pressure is constant, owing to gravitation of the organs; and this force is at times much increased by muscular action. On making strong muscular efforts with the whole body, the thorax inspires, the diaphragm acting becomes tense and unbent from its arched form, and the abdomival museles at the same time acting are rendered firm and unyielding; abdominal space is therehy contracted, and it is at this erisis that the viscera, reacting by their own clastieity against the parietes make an exit for themselves throngh those parts which are weakest-namely, the inguinnl regions, towards mhich, being the most dependinir parts, the iutestines matually gravitate. But as by visceral compression on all sides is implied a tendency to visceral reaction towards all points, so we find hermiae occurring in warious other sitnations. The contents of a hernial protrusion throngh tbe abdominal parietes correspond in general with tbose divisions of the intestinal canal which naturally lie adjacent to the part where the rupture bas oecurral. If it be at the umbilicus, it is either the transverse colon, the omentum, the small intestine, or it may be the stomach, which forms the contents of the swelling. If it he at the right inguinal region, the contents consist cither of the omertum, small intestine, or the intestinum erecum; if it be at the left groin, it will contain either the omentum, the amall intestine, or the sigmoid flexure of the colon. Wheu the rupture is in the lelt side of the diaplaragm, the nppere part ol the desecnding colon will be fomd promming into the thorax; and it is on this side that a diaphragnatic hernia can the more easily occur, for here the spleen is, if of normal size, too small to prevent it, whereas on the opposite sile the diaphragm has the whole convex surface of the liver elosely applied to it. It is not, however, from the special eontents of a hernin that the anatomy of the parts implieated derive their chief interest, or the accident itself its partieular name. Hertiæ are variously named in aecordance with tbe fol-
lowing circumstanecs: riz, the [1tecisw locatity at which rach weeurs; the size nud form of the turnour ; the time of life when they hapien. Ex:cusl peculiarities do not serve radically to distinumish them, thongh it lre true that the ingnimal fornu ocours mewe commonly in the male: sme the crural form in the fimale. The most embiten forms of hernias hupper at those localities where the nhdominal walls ame traversed by the howdvessels on their way to the ontsranding parts; and where, in consequence. the walls have become weakened. I'huse sitnutions are the umbilieus a point chameterizel as laving given [ussage (in the fixtul state) to the mubilical ressels; the ingumal caual. thronzh which rhe resticles prased in early lile, and which is ufterwards traversel ly the slumatic resocts: the funome camal, whicb transmits the femmal rusels; the thyroid aperture and the smero-sciatic notch, through which respectively the thyroid and glutenl ressels pass. All points in the abluminal wallo may give exit to intestibal [rotrusions in consequence of malfomatiou, diserse, or injury; lut as the more common arieties of hernise met thee which happen at the inguino-temoral regiun, and these, forthmately, whe the most mangeable noler the care of the surgical anatomist, the structares concerned in thein accurrenec slionlul have first consideration.

A direet opening from within outwards does not exist in the walls of the abdomen. Anatomy remders it demonstrable that where the spermatic and femoral vessels pass from the abshowen to the extemal parise, they eany with them a tulular eovering of the serembl layens uf structures, both membranous and muscular; which they enconnter in theis passage. The ingninal and crural forms of hernia which followy the passages mude by the spermatie and lemoral vesels must then mecessardy bave tbe same investments, and such others as, in addition, they encounter. If the dissection be cunducted with this gememal ider, the several layers of structnres, as they present thatuselves, will be the more easily amb correctly nuderstoad.

The groin in its modissectel state is marked by certain elewations and depressions, which may serve to indiente the relative position of the more important subentancons strmethres. The inguinal part is surarated from the femoral part of the groin hy an indulating groove extending from the spine of the iline hone to the symphysis fulbis. This groove or fold marks exaetly the situation of that tibrous band (Poupart's ligament) which stretches hetween the points now muned. From helow the middle of this nhdomino-funoml yrveve anther will be observed directed obliquely inwards and downwards between the upper part of the thigh mul puhic eminence to temminute in the scrotum; the external border of the pulnic cmincuce which this groure bounds indicates the course of the spermatic cord the the seroma: and the eord can he rendily felt along it benouth the skin. In wh suljects, however gross or cuarciatel they muy be, these two grooves me plainly distugnislable: and as they brar relation to the several kinds of rupture taking place here, the surgem slumh consider them with interest. It is Poupart's ligamon and the spermutic cord wheh chiefly determine the shape of the inumo-lemonal region. On removing the integmanest we find much ndipose sulstunce still preserting the ontward form of the groin, owing to its being invested liy a thin layer of loose membranc, which is numed the superficiul fascia. This mem brane may be now traced from over the abplomedr wid the jublers to where it becomes intinately tomected with Poupart's lirament; mud

FIGURE OF PLATE XXYI.

[^5]after forming a loose covering for the cord, deseends with it to the ferotum. It is the same faseia which from the hine of the ilio-pubic groove cuslenths the niper part of the thigh subentaneously, and here masks the features of the fascia lata. At its comexion with Poupart's lignnent the superficial fascia is devoil of adipose substance, and binds the thin iutegunent to the ligament; but above this structure over the ulbdomen and pules, and below it over the thigh, the meshes of the membrane befing loaded with fat will aeeomit for the permancney of the fold of the groin after the intpmument is disseeted. The other parts in which the character of the membrane varies are the serotum, where no fatty sulbstance exists in it; and the adjacent part of the thigh, where, owing to its leing perforated by numerous small arteries, veius, and tymplaties, it is named the "cribriform faseia." As the menbrane thus invests all parts of the groin, so will it always be found forming the subcutancons covering of the heruin, whether this be inguianal or fenoral. And as it is attached along the ilio-pubie line to Poupart's ligament, thus separating the uldominal parietes, the pubes, spermatic cord, penis, and scrotmo from the thigh, so when urine happens to be extrivasated into this sbdomino-scrotal bag of the membrane, the effeet ul' that aecident dors not involve the thigh. Tbe general relations of the superficial fascia are described by" Camper thus: "Mnseulus obliquus igitur extenus abdominis, qua parte eameus est, membrnaa quadan propria, quali omnes museuli, tegitur, quæ sensim in aponeurosin mutata, nc eum tendineis lujus musculi partibus unita, externe ae anteriore parte abdomen tegit; finem vero nullibi labere perspicuum est, ad pubem caim miscet cellulosa membrana, eum liganento penis in viris ac clitoridis in feminis, involucrum dat musculo cremasteri, ae aponeuroseos speeiem innseulis anterioribus femoris, qun glandulx inguinales, ae eruris vasa majora obteguntur." (Icones Lerniarum.)

Having now examined the superficial faseia, and the manner in which it monlds the adipose substance to the characteristic shape of the region under notice, it becomes uecessary to remove them, in order fully to enpose the parts but 19 get partially risible. This being done, we have in view the apponeurosis of the esternal oblique muscle of the abdomen and the fascin lata of the thigh botb joined along the ilio-pubic groove, where they form Poupart's ligament, and still maintain the shape of the groin. This region mas, witb a view to the clearer explanation of the surgical anatony of it, be conveniently described as presenting two triangular spaces, the one inguinal, the other femoral, plaeed base to bnsc. The inguinal triangle may be defined by a horizontal line, drawa from the iliae spine to the umbilicus, and by a perpendicular one from this point to the symphysis pubis: the femoral triangle is represented by the sartorius muscle arising from the ibac spinous process, and the adductor longus from the symphysis pubis, and both meeting at the upper third of the thigh, white Poupart's ligament represents the conjoincel bases of the two spaces. In the intervals thus marked out, we have the parts respectively concerned in the two forms of hernia here occuring; in the upper space appears the spermatic cord, emerging from the abdomen, close above the inner third of Poupart's ligament, whilst close below the same portion of that structure, appears the saphenous opening in the fascia lata. Both spaces will now be noticed to be tmaversed by the superficial bloodvessels and nerves. Aseending from the imuer side of the thigh, tbe saphena vein, the largest of those now apparent, gains the saphenous opeuing, which it enters to join the femoral vein concealed beneath the fascin. Previonsly to entering the opening, the snphom veiu is joined by others congregating from the iliae and hypogastric regions, and also from the outer, inner, and foreparts of the thigh, so as in this place to form a plexus, the branches oll which are visibl bencath the skin during life, anil hence may be avoided in surgieal operations. In company with each of those veins is a suanll branch of the femorul artery, all of which as they course in the direction of lurger declp-suated branches of that vessel, are named accordingly, riz., superticial cpigastric, ciremintex iliac, and pudic. Those small arterics pieree the fuscin latn, immediutcly below l'oupart's ligament; one or more of then are always divided in operations for hernix, but tbeir suall size renders this of little consequence. Tbe branches of nerves which appear with those vessels, are also of small size: the primeipal of then are the external cutancons, derived from the lumbar plexns, and appenring on the lascia, a little below the ibac spine; and the middle and internal cutameons, given of from the anterior crural nerve. The groin is remarkable, like the axills, for containing a large number of lymphatic borlies, which can be felt beneath the skin. They form two inineipal groups, one of which overlies the middle of Poupart's ligament, nhd the other elose to the saphenous opening, among the plexus of veins. Thase of the fomer group receive the lyaphaties of the generative organs, and are liable to inflame when those purts alcernte; those of the
latter group sympathise with irritations of the leg and thigh. Such of latter group sympatbise with inrita
the veins and lymphatic bodies as obscure the parts on which they lie, may now be removed.
The uponeurosis of the external oblique musele and the adjaecut part of the fascia lata being now in view, we find the inguino-fenoral groove to be permanent in all positions of the body, while the forms of the regious above and below it vary aecording to those positions. Tbat of the inguinul region varies more than that of the femoral, owing to the mobility of the viscera: the anterior bulge which the viscera give to the inguinal wall, even in the recumbent posture, is mueh more prominent when the body is erect; and as this cireumstance shows that the inguinal wall is not only retentive, but supportive of the viscera, so the dissection will gain an interest, if condueted with a riew to explain the uatural provision made for both offiees, and in what respects it fails of those ends.
The ingninal region is sheathed throughout by the aponeurosis of the external oblique. The fleshy fibres of this musele embrace the loins between the false ribs and the erest of the iliae bone, and appear no fartber in front of the abdomen, than about the plaee of the spinous process of the ilimm. At this part the broad tendon of the muscle commenees, and passes in parallel fibres, obliquely, downwards and forwards, to the linea semilunaris, with whieh it is conneeted, and thenee to the linea alba, the symphysis and crest of the os pubis. When we examine the structure of the aponeurosis more elosely, we find it to vary in several parts, both as to the arrangement and the thiekness of its fibres; aceording to the charaeters of tbose parts, tbough they are inseparable from the entire structure, different names are assigned to them. Between the iline spine and the erista pubis, we observe the lower part of the aponeurosis to consist of a strong band of fibres, whieh is the medium of union between it and the faseia lata. This is Poupart's ligament, which represents the line of demarcation between the groin and the thigh, and by its strengtb serves speeially to support the former mat from the latter, in the ereet posture of the body. Its office as a ligament is hence mucb less obvious tban its office as a support ngninst superineumbent viseceral pressure; and accordiugly vie notice it to be stretebed between the iliae spine and erista pubis, not tensely in a rigbt line, like the chord of an are, but lax and curving towards the thigh, like the are of a cirele, and in the degree of the pressure on it. Inmediately above the middle of Poupart's ligament, may be observed the commencement of a separation between the fibres of the aponeurosis for tbe transmission of the spermatic cord. The fibres so separated form two other bands, whieh, gradually widening from each other as they proceed inwards, become inserted, the upper one into the symplysis pubis, and the lover one into the spine and peetineal ridge of that bone. Those bands are the "pillars" of the external abdominal ring. The interval between them is the "external ring;" but it is in faet more generally of a triangular form, having its apex above the middle of Poupart's bgament, and its base between the spine and symphysis of tbe pubes into whicb its pillars are respeetively inserted. The exterual ring, whicb, viewed as the interval between its diverging pillars, exhibits an angular shape, assumes a circular one by reason of other fibres wbich eross the pillars at varying angles. Tbe fibres, disposed erossways, constitute the "intercolumnar fascia," which, however, is as much identified witb the aponeurosis of the cxternal oblique inuscle as are the pillars or Poupart's liganent. From this peculiar arrangement of the two sets of fibres of the aponeurosis it is evident that the immediate object is to give strengtht to the lower part of the groin, where it is habitually most required, and to this end they cross eacb other like woof and warp of woven texture.

Where the spermatic cord, emerging from the abdomen, becomes definable through the fibres of the inguinal aponeurosis, viz., at a point about midway between the iliac spine and pubic symphysis, and in the direct line between those two points, we find it distinctly sheathed by a production of tbat structure. It is of those fibres of the aponeurosis wbicb constitute the intercolumnar fascia that the cord derives its envelope, and this is named the "external spermatic faseia." In the same direction that tbe intereolummar fascia rounds the pillars of the external abdominal ring, we see them crossing and incasing the cord as low down as where it enters the scrotum, and where it becomes so filmy and transparent as to be scarecly discernible from the cellular membraue, tbougb, in many cases, it exists as a distinct tubular covering for the cord ns low as the testicle. In the female a similar envelope derived from the same part covers the round ligament; but in the carly fretal state, when the testiele has not passed from the abdomen, and also in the adult in whom an arrest in the descent of the testicle has occurred, we find with the absenee of the cord an occlusion of the extermul abdonumal ring by those very fibres (intercolumnar) whicb

commentary on plates xxyi. xxyll. \& XXYHi.

give the cord, when appearing outside the groin, a covering. From those faets it will be evident that the so-called external ring does not exist as an aperture with defined margias formed in the tendon of the externnl oblique musele. Such a state does not exist till, in dissection, we make it. It is only when we divide the spermatie fascia from the intercolumnar that we form the ring, and then, of conrse, it inust be regarded as artifieial. In the same manner, then, as the cord takes a envering from the superficial fascia, does it take another from the internal columnar part of the aponenrosis of the external oblique muscle and when the hemia deseends throngh the cord, both those membranes must likersise invest the intestine. Althougl this point, where the spermatic fuscia is derived from the aponemrosis, varies in several indi riduals, get the fact of the extemal ring being the month of a tube never varies. But upon the form and situation of the origin of the cord depends, in great measure, the strength or weakuess of the groin. In some instances the eord becomes pendulous moch farther outwards than is usual, and consequently at a point so nearly opposite to the internal ring as to offer a direct passnge to heraial protrusion. In other instances the pillars of the external ring are bound together by the intereolumnar fibres so far inwards as to support and cover the cord till it touches the spine of the pubes, and by the oblique direc. tion thus given to it in its passage through the inguinnl pariefes it is fortified agninst hernia. The latter condition is the more usual, aud in all such cases the cord, wheve first obscrved, drops over the lower hand or pillar where this is about to become attacbed to the crista puhis, while the upper band is unconcealed by it. When a hernia protrudes fhrough the external ring, it has the same relation to the pillars as the cord has; but the position of the spermatic vessels, thongh still enveloped by the same coverings as the bernia, is subject to vary from causes to be noticed hereafter.
On turuing next to the exmmination of the fascin lata we find this to be so intimately connected with the lower horder of Poupart's liga. ment that the two structures may be regarded as contiunous and oue. The ilio-pubie groove, whieh at first sight appears to separate ther, does not do so in fact, for we find the groove crossed, especially at its outer two-thirds, by bands of fibrous substance derived from the fnscia lata, and directed upwards and inwards through the testure of the inguinal aponeurosis, and binding the parallel fibres of that membrane rogether. Those bands form the intercolumnar and the spermatic fuscies as they cross the extermal ring. In the femoral triangle, of which Poupart's ligament represents the base and the sartorins and addureor longus museles the sides, the fascia lata is remarknhly strong and filmous, so much so, that the parts beueath it do not appear through it ; but where it forms sheaths for the muscles it is thin and transparent. The fascia is here surgically divisible into two parts-an external or iliac part, and an internal or pubic. The oocirrence of an interval between them serves to divide the parts, but helow the opening they are contimons. The iline part is of much denser structure than the pubic, and occupies a higher plane than it. It is the iliac part which is connected with Poupart's ligament along its whole extent from the crista pubis to the iliae spinous proeess, and beneath which the femoral vessels pass. When we trace this portion of the fascia from the erista pubis orer the upper and imner part of the thigh, we find it presenting an apparently abrupt edge of erescentic shape (the falciform process) looking towards the pubes, and receiving benenth it the saphena vein and its tributaries; but the edge of that process, as now defined, has required a dissection which must teach that it does not naturally exist of this form, for we have had to separate from it the superficial faseia with which it is in the natnral state of the parts blended, and also some adiposecellular membrane which oceupies the eleft between it and the pubie part of the fascin. The pubic part of the fascia elosely invests the ndductor muscles It their origins, and is so thin that these can be partially defined through it. As those museles incline backwards from their pubic origins to their insertions into the thighr-bone, so the fascia which follows them must pass beneath the iliae fascia and behind the femoral ressels which are
supported on those muscles. Fron this disposition of the two gortions of the fascia to which dissection has given the appearance of being separated above, aud which are actually joined below, we find as the result of a kind of folding of one part. on the other, an interval formed between them for the space of about two inchea helow the inner thiril of Poupart's lignment, and this interval is numed the "saphenous openiug"" although exhibiting uone of the claracters of an aperture, either ns nature presents it or as the scapel has made it.

The saphenous opening presents in some respects an aunlogy to the external abdominal ring, although the two happen in different sifuutions and in relation to different parts, Both have reference to bloodvessels transmitted from the abdomen outwnids; the forms of looth are ilue to the manner in which those vescels pass; the hernie which occur in them are the consequence of both being weakesses in the ingninal parietes; and the membranous investments which those hernix derive in their way through both are, with one or twe exceptions, of the rery same kind. However, notwithstanding those general features of their aimilitude, we find anatomical diflerenees lsetreen them, and, obrious as those differences may appear, a comparison of them may not be without some practical interest. In regard to siow the external abdominal ring measures in general about a fourth of the area of the saphenousonpering; and as both are constructed of strong fibrous sulatance not easily dilatable, so may we expect that the lesser of the two will offer the greater amount of constricting resistance to the hernia which it transmits. As to situation it may be observed that, though the saphenoms opening is femoral and the external ring, inguinal, yet the difterence in this particular is chiefly apparent in respect to their distal borders. The proximal borders of the two are in sueh elose apposition that they are traceable from the same point, viz, the cristn pubis. Iuto this part are inserted the inferior pillar of the ring, and the superior cornu of the fulciform process of the saphenons opening, the width of both measuring only a few lines. And as the cord depends immediately onteide the crista pubis over the parts attached to this point of boule, and consequeutly over the upper part of the saphenous opening. so may the inguinal aud femoral hernise reach the same sitmation, and render it difficult to distinguish betreen them if other features be obscured. In form the difference between the externul riug and saphenous opening is well marked. The former is tubular, by reason of the manner in which the testicle has carried dowu with it a process of the ingniaal aponenrosis, but the latter is valvular by a folding of the fuscia lata, which hence uppears of two distinct parts in bonnding the cleft between. The existence of the saphenous opening is determined altorectier by the falcifonn process of the iliac part of the fascin lata; and this process does not appear of that form till we have dissected the superficial fascia from its connexion with it. To this circumstance is to be ascribed the fact that so accurate an observer as Siemuering (de Corporis IJunani fabrica) bas taken no notice of the saphenons onening. But when we consider the faleiform process as it appears from dissection, it. gires existence to the saphenous interval by its own peculiar figure nud reln tive position. From its crescentie forn it is dirisible into a middle part and a superior and inferior cornu. By its stauting apart from the pubic: fascia lata it occasions between both as shallow valvular interval, which is merely a recess separated at all points, not only from the slenth of the fenmoral vessels but from the nbulominal interion: Now, as this recess (saphenons) could not be thus insulated if the falceiform process were a sumgle layer of membrane, but may lo sa if the process were a fold and consisting of two Layers, we accordingly find, on passing the point of the finger bencath the process, that the latter is its real condition. On making a section of the part nt any point between its two corma we distinguish those two liners, the one being supericial to the femoral vessels and the other being bebind them. The sapbenons opening, therefore, is only such in outward sceming, and the emare of it occerrence is a folding of the fascin to form a protecting covering for the femoral vessels which are immediately ontside it.
While the groin as yet retaius its normul form from the inguinal

FIGURES OF PLATE XATII.

 thic cord throngh exteryad ring.

 Fa, forming exterval spurnatie mindi- \mathbf{F}, Surtarint musde coverell hy fascin, and in re

aponcurosis, and the fascia lata being eutire, it will be of advnutage to nseertain in how far those parts are influenced by the motions of flesion and extension, for the reduction of hernia ly the fueis is aeknowledged to be either hindered or facilitated by those motions; and at the same time it may be determiued which are the proper situltions where a section of the parts can give, with most saicty, the grentest degree of relaration, for according to this the reduction of hernias by u cutting operation is best to be effected. The degree of tension which the groin exhilits in the ereet posture is chicfly due to the superincumbent weight of the how da, for wheu the body is laid supine, these gravitate towards the back, aud the groin is, in consequence, rendered flaceid. But cren while the body is supine, il' we extend the thigh from the abdowen, both parts will be put on the strecth, and this is orving to the comexion which the fascia lata bas with the inguinal nponeurosis, through the medium of Poupart's ligament; lior on flexing the thigh at the same time that the body is supported forwards all three structures heeome equally relased. Viewing the effect of those postures on the cetrmal abdominal ring, we find tbat it is but little elanged cither as to form, size, or situation; but evidently the flexion of the thigh partially relaxes it, while the extension of the thiryh renders it somewhat more tense than usual. The saphenous opening is, on the contrary, much changed during tbese motions. On extending the limb, the vertical diameter of the opening is elongated; its depth (seldom more than in few lines) is deereased, and loth these conditions are due to the tension of the faleform process. When the lingh is flexed chauges are effected in the saphenons opening of an opposite eharacter, and chicfly owing to the relaxation of the falciform proeess. In considering the reason why the external ring is less infheneed than the sapheuous upening loy those motions, it appears to be orring to their respective phace and the comexions of their formative farts: the pillars of the ring are inserted into two fixed points of the pubie hone, and the ring itself is so near that bone that the position of the thigh eannot exereise any very marked change in it; but the faleiform process being eonnected by only one part-its npper cornu-with the os pubis, may admit, on that account, of nll the changes now noticed. The practieal applicatiou of these faets is obvious: for the reduction of all raricties ol' heruia in the groin the body should be laid supine, and the thigh should be flexed; but it appears that the adrantages of this position are more positive in respect to the femoral than to the inguinal hernin. With regnrd to the most eligible line of seetion for obviating constrietion this miglit be easily determined, but that the safety of the hloodvesaels has at the same time to be considered. For widening the external abdominal ring a section of the aponeurosis in any direction radiating lrom that point over the inguinal and hypogastrie regions would effect that ohject sufficiently, so that the section (towards the unlilicus) which, with a view to avoid the epigastric artery, we ought to make, will, for the liberation of the constricted part, answer as well as any other. The same remarks apply to tbe saphenous opening wheu the olyject is to widen it in enses of constriction. Any liue of seetion made from the centre of this opening through an are reaching from the iliae spine to the symplysis pubis, provided it divide the faleiform process und l'oupart's lignment, will relieve coustriction; and, thercfore, the seetion of the parts in the dircetion of the crista pubis, wbich for avoiding the femoral vessels should be alwuys cbosen, will lie found as effectual as one in any of the otber direetions. The truth of this will appear when the vessels are in view.
lhp proceeding to expose the next layer of structures it is required to dissect ofl the aponeurosis of the exterual oblique muscle, together with the faseial lata. If the dissection be so conducted as to leave Poupart's ligument entire, and also the borders of the parts forming tbe external ring and the saphenous opening, the rclation of the struetures will he the more clearly secu. This being flone, we have now in viaw tbe inguinal part of the internal obligne muscle ahove Poupart's ligament and the sheath of the femorul vessels below it. The internal oblique muscle, compared with the extermul, is of a very different slape, both as to its fleshy and tendinous prots; the aponeurosis of the latter covers the fleshy fibres of the former. The fleshy part of the internal oblique arising from the crista itii nud onter two thirds of l'oupart's bgament passes over the inguinal region as far invards as the linea semilunaris with which it is eonnected even as luw down as the external ring. At the linen semilumaris the tewdon of this musele first appears, and thence stretches inwards to the linea albu, heneath the aponenrosis of the extemal oblique, covering the rectus musele. On examining the lower border of the muscle-that in councexion with Poupart's ligament, it seens to be lut ill defined in this situation; ma wbile tracing its finees here from origin to ins retion 1 find them mingling impereeptibly with in set of looping fibres whieh protrude with the cord through the external
ring and aceompany it as an investment into the scrotum. It is in this condition of the muscular fibres that the deseriptive amatonist secs a reason to distinguish hetween on internal oblique musele and a eremaster; but while continuity of simdar parts establisha a whole, he, in faet, camot correctly in any ease regurd the two as distinct muscles. If this distinction is difficult to be drawn in a wasted state of the museular parts, it is altogether impossille to defne it in the state of full museular development. When, in a subject presenting the latter condition, we examine the lower portion of the internal oblique, it will be found sheatling the whole inguinal spaee from side to side; and on traeing the extent of its origin from Pompart's ligament, we find its fibres attached to that structure is far intrards as the external ring, having tbe same oblique arrangement downwards and forwards. In this serial order as to origin the fibres of the exterual oblique are continued by the fibres of the clemaster, and when those of tbe latter have passed the external ring, tbey then first assume the formi of inverted loops upon the cord, ex. hibiting the character of deseent and aseent, and plainly expressing that the testicle, in its passage to the scrotum, has given them this form; for not ouly do the deseending eremasterie fibres arise from Poupart's ligment like the fibres of the internal oblique, but the ascending cremasterie filres are inserted into the lower end of the linea semilunaris in serial order also with the fibres of that musele. Such, then, being the aetual state of the parts, expressing ly every feature that the testiele and cord have derived their cremasteric covering at the expense of the internal oblique muscle, we may conelude that no distimetion can be made between them hecause they are parts of the same whole form now as they originally were. In the same mamer, therefore, as the fascia spermatica is a tubular production of the aponeurosis of the external oblique, so is the eremaster of the internal ollique. If Cloquet (Recherches Anatomiques sur les Hermies de PAbdomen) had never denoonstrated the correetness of this view, another would liaye. That suel was my owa view of the prits ere I eonsulted that work will appear in future remarks.

By making a vertieal incision througb the internal oblique, midway in the inguinal region, and turning aside the dissected parts of that musele, we expose the transversalis musele of similar sbape and dimensious to the one now divided. The eomexions of both museles are also abike ${ }_{1}$ inasmueb as they arise from the erest of the iline bone and the outer two-thirds of Pouprut's ligament, and are inserted into the whole length of the linea semilunaris. Their museular fibres in this situation lave mueh the same direction-viz., domnwards and forwards towards the lower part of the rectus. In the inguinal region the tbree abdominal muscles form suceessive strata; but their tendons, in forming the shenth of the reetus musele present a peculiar arrangement. While the three tendons appenr to be ineorporated along the border of the reetus, and in this manuer to form the linea semilunaris, anatomists describe tbem as eneasing the rectus musele thus:- the tendon of the external oblique passes altogether in front of the reetus; that of the internal oblique splits at the border of the rectus into two layers, which enelose that musele between them, but midway between the navel and pubes both layers pass in front of the muscle; the tendon of the tronsversalis passes behind the upper three-fourths of the rectus, but at the lower fourth it joins both layers of the internal oblique, and with them passes in front of the rectus. From this disposition of the tendons, whether true or otherwise, we find the pulsie part of the rectus musele devoid of the shenth behind, and lined in this place by the abdominal membranes. Corresponding with the part where the tendons unite and pass in front of the rectus we find them lorming on the onter border of that musele, and continuing the linea semilunaris downward, a dense fihous band whieb the surgieal anatomist has named the "eonjoined tendon." By this part the abdominal muscles beeome inserted into the peetineal ridge of the pubie bone; and ns it appears immediately behind the external ring it serves to fortify this opening against direct intestinal protrusion. The conjoined tendon is in some individuals of less breadth and density than in others, and to this eircumstanee may be aseribed the greater bability of the former to the aeeident named.
On examining the lower border of the transversalis musele, I find it, especially in museular subjeets, to present features similar to those alrendy mentioned of the extermal oblique. The two museles bere blend together, and in the scrial arrangement of tbeir fibres and tbose of the eremaster there is uo natural separation, thus at onee suggesting the idea that the eremaster is a derivation from tbem both. Assuming this to he the ease, it must therefore follow tbat when the dissector removes the eremasteric fibres from above Poupart's ligament, and gives unnatural definition to the lower borders of the transverse and oblique muscle, he limself enuses tbat vacancy iu the muscular parictes of the groin which

docs not naturally exist in the acighbourhood of the origin ol the cord. In the disscetion so conducted, the cord is made to assume the variable positions which anatomists report it to have in respect to the muscles now under notice. But when we view Nature ns she is, and not as fashioned by the scalpel, we never fail to find on easy explanation of her form. In the feetus, prior to the descent of the testiele, a cremaster muscle docs not appear protruded throngh the external ring (Cloqnet t_{1} op. cit.), and in this case the space immediately above Poupart's higament is entirely sheathed by those parts of the muscles which sulsequently the passing testicle converts into a cremaster. In the adult, in whom one of the testicles has heen arrested in the abdomen, I have observed that the museles do not present a defined arched margin around the commencement of the eord, but appear (as in the fethis) as low as Poupart's ligament. In the adult in whom the testicle has deseended to the scrotum, the cremaster alwnys accompanies it, and the cremasteric filires are serially continuous with those of the inguinal muscles, thus covering the space above Poupart's ligament, and rendering it evident that "cremastcr" is hut another name for the lower parts of those muscles. Again, in the female, in whom the spermatic vessels do not appear, the inguinal muscles present in thcir full quantities, having sustained no diminntion of their bulk by the formation of a ercenaster. But when an external inguinal hernia occurs in the fenale, the howel in its descent carries hefore it a cremasteric covering at the expense of those same museles, just in the same way as the testicle does in the fotus (Cloquet). Such bcing the facts, the following inferences may be legitimately drawn therefrom:-1st, that the ingoinal space is not naturally devoid of a muscular covering, while the eremnster exists and owes its form to the manner in which the testicle has metamorphosed those muscles; 2nd, that the name cremaster is one given to the lower parts of the internal ohlique and transverse muscles which cover this space and protrude through the ring; and 3rd, that to separate the cremnsteric elongation of those muscles, and then describe them as prosenting a defined arehed margin over the origin of the cord, an inch or more alove the middle of Poupart's ligament, is an act as arhitrary on the part of the dissector as if be were to suhdivide those musclcs still more, and while regarding those suhdivisions as complete forms, to give them names of different signification. When once we consent to consider the eremaster as constituted of the filres originally proper to those museles, we thens are led to the discovcry of the true relations of the cord in this situation.

By removing the internal ohlique, transverse, and cremaster nuscles, we cxpose the inguinal part of the transversalis fascia. This menhruue affords a general lining to the abdominal parietes, in some situations of which (particularly the groin) it appears of denser and more filirous texture than in others. It is stretched over the altumen hetween the muscles and the peritonxum. The fascia iliaen, pelvica, and transversalis, arc only regional divisions of the one universal memhane. Viewing this memhranc in its totality, I find it exhibiting many features in common with those other fihrous structures which envelope serous eavities. The transversalis fascia supports externally the peritourwa, in the same way as the dura mater supports the arachoid memhrane, or as the pleural fascia supports the serons pleura; thus, while the serons membranes form hy their visccral and parietal portions completely shut sacs, reflectel from the vessels as from other parts, the filrous memhiranes which arc extcrnal to the serous are pierced by the ressels which course between then and the serous, and afford sheaths or cuvclopes for those vessels in their passarge from the cavities to the extcrnal structures. The sheaths of the spermatic and the crimal vessels are productions of the fascia transversalis. In the groin, the nembranc is in general of so dense a texture as must offer n consideralile resistance to visceral pressure, which is here very constant, and in full force. The fascin is here adherent to the external surface of the peritoncum, and to the inner surface of the transverse muscle hy means of intervening cellular tissue. On tracing the fascia from the liypogastric and iline regions to the middle of the groin ahove Poupart's liganent, we fiud it forming a camal-shuped elongation, which invests the spermatic vessels, and descends with them
to the testicle in the scrotom. This elongation is named the "fascia spermatiea interna" (Sir Astley Cooper) and "lascia infundibulitorm," (Cloquet.) The sime part, waen it curloses an external ohlique herniu, is named "fascia propria." The neck or inlet on this canul, which is its widest part, is oval, and constitutes the internal abdominal ring, which is it looks towards the abdomen, and forms the entrance of the canal annot of coursc lee seen from hefore until the canal is slit open. The elative position of the internal and external rinns mins be now scon, and also the extent and oblique direction of the cord between them. While the intersul ring is formed in the inguinal portion of the fiscin trinsversalis, we find the hypogastric portion of this momlrane fencing the extermal ring behind the cord, and becoming iucorporated ut this place with the outer horder of the conjonned tendon in a line with the linea semilunaris. The space which the cord traverses betwect the two rings is the "inguinal canal." The length of the camal is generally from an inch and half to two inches; its varicties as to lungth depend upon whether the extermal ring is larther from the pubes than nsual, or whecher the intemal ring approaches nearer the pubes than it ordinarily dows Under either circumstance, the position of hoth ringes will the more nearly correspond; and in the degree of that correspondence the groin becomes the more hable to hernial protrusious. A comparison of the tro rings will show that the parts in which the intemal one is formed are luore gielding then those of the esternal, and hence less bikely to straugulate : hernia.
In very much the same form as the spermatie ressels derive their envelope from the finscia transversalis, the femoral vessels take their sheath from the same meubrane. Along the line of Poupart's we find the iliae and inguiual parts of the fuscin joined: lut on examining the disposition of the memhrane in respect to the vessels as they pass under the middle of the ligament to the thigh, its continuity is traceable alone on the sheath which they protrule with them The fore part of this sheath is mentioned as formed hy the fascia trumsersalis, the buck part hy the fascia iliaea; but as these distinetions naust be mercly nominal, forasmuch as hoth divisions of the fascia are coutimuons not only elsewherc, hut in the sheath, it is therefore unnecessary to direll upon them. In form, the sheath of the femotal vessels is that of a fumel, and surrounds them on all sides. Its broad entrance, which is more capacious than the vessels need (the surplus spuee heing on the inner side of the vein), is heneath Poupart's ligment; thence it nariows to where the vessels get under the smitorius muscle, and here it applies itself closely to them as their outer coveriug. In passing under Poupart's ligament, the vessels in their sheath are supported hy the horizontal rumus of the os pulis; they have the femoral parts of the pronts and ilincus muscles close to their outer side, and the pectincus muscle on their inner side, and passing belind them. Within the sheuth we find septa, which serve to separate the enclosed vessels from each other. The relative position which the vessels have to eacb other, and to the parts which transmit the femoral hernia, is all that requires notice at present. The artery passing under the middle of Poupart's ligument has the anterion crural uerve close to its outcr side in a distinct process of the sheath; and the femoral vein lying close to its inuer side. The vein is in contuct with the lower end of the faleiform process of the saphenous opening. Is the win lics straight in this situation while the falciform process cnrves inwards fiom it to the crista puhis, a triangular interval ocenrs between the margin of the fitciform process internally, Poujart's ligament above, and the vein externally. This interral is lined by a process of the slienth fornuig a compartment distinet from that of the vein; it gives pastage to the femoral lymphatics cutering the abdomen ; and it is through this compurtment that the femoral hernin is transmittel from the abdomen to appear at the saphenous opening. This portion of the sheath is unmed the "femoral canal," and of its imner side the "fascia propurin" of the hernia is forined. The canul widens upwnrds from the lower corm of the falciform process to benenth Poupart's ligament, where this st ine ture nud a process of it (Gimberaat's ligament antached to the pectinen) ridge) homad it anteriorly and internally, while the os pubis is belind it and the vein to its inner side. The entranec of the canal so loumded is

figures of plate xiviti

Fig. 1. A, Anterior spinous process of ilizn-B, Exteraal ablique munde- - , Lutemal

-R , Minuns inuselo.

called the "crural ring." On examining its mper end with the finger, we feel the eanal has no conmmication with the ahdomen; it eannot have in the natural state of the part, for the sulserous tissue and the peritonmun are drawn aeross it; and hence, hefore the bowel can descend through it, both membranes must he either dilated or ruptured. On emmparing the crural ring with the saphenous opening, it will lie seen that of the two, the former, owing to its being of mueh smaller aren, and to its being bounded by much more unyielding struetures, is the more likely to be the seat of stricture in hernia. While the parts hold as yet their normal relative position, the close proximity of the crural ring to the external ahdominal ring slount he well observed, for they are only sceparated by the width of Pouprrt's ligament.
Proceeding with the dissection of the inguinal region, we have nest to detach the fascia transversalis from the peritonenm, and this may more ensily be effeeted at the internal ring or mouth of the funnel-slapued sheath of the spermatic vessels. Between those membranes we find the suhserous cellular tissue conneeting the two. In the ncighlsourhood of the ring, this subserons tissue is generally more abundant than elsewhere. It is described by Kearpa, (Sull Ernie) as forming here an investment for the spermutie vessels inside the fimnel-shaped shenth, and espeeially as assuming this form in old inguinal hernix, when it is sometimes mixed copionsly with fatty tissuc. In it is to be found imbedded, the "infantile eord," which is the inpervious remains of the serous tube, Which originally led from the aldomen to the tunica raginalis and which will be considered in connexion with congenital hernio. On disseeting the suhserous tissue carefully, from the internal ring, we now find the peritonenm drawn across this part so as to close it eompletely, and render the inguinal camal, (like the femoral camal) a place isolated, not only from the general serous interior, hut from all other plaees in the abdomen, and henec it must. be evident that hefore the howel, which is immediately applied to the peritoneum, oceluding the ring, ean he receired into the eanal, it must either rupture that memhrane or dilate and clongate it in the form of a sac. While examining the disposition of the membranes at the ring, we may also view the relative position of the adjacent vessels. The epigastric and spermatic vessels are sitnated, like all the others of the abdominal parietes, hetween the two membrane, as may be ascertained hy traeing them througlout their course. The exast position whiel they hold in respect to the internal ring, is a point of mueh importance, for the various forms of inguinal hernize are deseribed and operated on in reference to them. The epigastrie artery arises from the femoral, cither close above or helow Poupart's ligament, and in either case asecnds the inguinal wall in an oblique course, towards the navel. Soon after its origin it applies itself to the inner border of the internal ring, but being heneath the fascin transversalis, the artery can afford no support to that membrane in which the ring is formed. 1 mention this fact particularly, for, as we shall afterwards see, it is hence possible for a hernia to enter the internal ring, and yet have the artery carternal to the neek of its sic-a cireunstance which could not happen if, as I mee helicyed, or as some yet may, the artery: supported the inmer horder of the ring, by passing superficial to the membrane in which it is formed. Where the spernatic vessels are about to enter the inguinal eanal, through the internul ring, they eross the epigastrie vessels on their outer side ; and both sets of vessels being here on the inner side of the ring, pass from this place of their contaet in opposite directions to their respective destinations-the epigastrie vessels upwards and inwards, ramifying in the ahdominal parietes as ligh up as the epigastrinm, where the artery anastomoses with the terrininal branches of the intermal mammary, -the spermatie vessels downwards and inwards to the testicle. This relation of the vessels to enel other, and to the ring, never varies; at least those anatomists who have recorded the rarieties of all otber ressels, do not mention an instance where the spermatie vessels entered the ring on the imer side of the eprigastrie, and yet this is not anatomieally impossible.

Directing attention next to the posterior surface of the groin, it will he observed that at the situations where the vessels, nerves, and monseles phss to the Jimh, the peritonceum is refleeted from them to the parictes in such a way ns completely to seal all apertures. But opposite these the membrane is comparatively unsupported; and, moreover, the form of the ioguinal coneavity is itself such ns to point intestimal pressure agninst those places. The iliac artery, approacling Poupart's ligament at. right nugles, gives off, just as it is nbont to pass under the middle of that structure, two principal branelues-the circmmflex iline taking the direction of the iline spinons procirs, and the epigastrie, that of the nuvel. The epigastric artery divides the inguinal concavity into two fosso-an intermal and an external one, the former of which is the
smaller, owing to the course of the vessel being upwards and inwards Being more prominent near to its origin than elsewhere, the epigastric artery raises the peritonaum into a ereseentie fold-a feature made still more evident by the cord of the olliterated umbilical artery when side. long with that vessel, and thus both fosse are rendered decper below than above-their deeper parts corresponding, therefore, exaetly with the aldominal rings on either side of the epigastric artery, and affording lodgenents for the visecra.
When the peritonmm is dissected off, we find the inguinal and crural lings masked by the subserous eellular tissuc. The mannel in which the fasein transversalis transmits the spermatic and femoral vessels, appears as already described. Inside the iliae vessels and their epigastric hranehes we ohserve a spaee bonnded hy those vessels extermally, by Poupart's ligament attacbed to the os pulis below, and by the margin of the reetus musele internally. This space is the triangle of Hesselhaeh: its eentre eorresponds with the extermal inguinal ring; and defending that opening, we find stretehed aeross the space a dense fihrous suhstance consisting of the united tendons of the transversalis, the internal and the extermal obliqne momseles. This eonjoined tendon (of which Poupart's and Gimbernat's ligaments may praetieally be regarded as inseparable parts) is attached to the spine and pectincal ridge of the os pubis, and in some instances reaehes as far ontwards as the iline vein, and closely overarches that vessel. Generally it docs not appear of such great transverse width, and then between it, the vein, and the os puhis the interval which oeeurs gives the area of the eroral ring, or orifiee of the crural eanal. That portion of the snbserons tissue which masks the erural ring is named the "crural septum" (Cloquet), from having heen oceasionally found of such considerable density as likely to form a barrier against hernia. Its use in this respect, however, would be of little account if other preventives failed : according to the width and the density of the conjoined tendinous structure inserted into the os puhis, we nay judge how it will affect the size and passability of the extermal inguinal and the erural rings at the same time. If it be narrower than usual, the erural ring is by so much the wider, and the external ring less defended. If it be weaker than usual, it will, however broad it be, offer but little impediment to the eseape of the bowel through either passage. When it is broad and dense it not only obstruets the external ring effectually, hut also contracts the erural ring to so small a compass that the bowel cannot pass. When it admits of the hernia entering into the crural eanal, it then heeomes the prineipal eause of hindrance to the reduction of the howel by its resistant sharp mirgin, whieh ean only be overeome by section. The erural ring being formed between the os puhis below, the iliae vein externally, and Gimbernat's ligament (which forms the border of the eonjoined tendon), superiorly and internally, the line of seetion is of neecssity always to be made in the latter direetion, exeept when the obturator artery, derived foom the epigastrie, elosels overarelics the ring; but this is a condition rarely oceurring. As a general rule, the erural ring is wider in the female than in the male, owing to the greater length probably of the horixontal ramus of the os pubis in the former. This eirenmstance accounts for the greater frequeney of erural hermia in the female. While we view the three rings together, their very close proximity strikes attention. The inguinal canal whiel, between the internal and external rings measures about two inches, has the crural ring under its middle, with Poupart's liganent alone intervening. Between the adjacent horders of either of the inguinal rings and the ernral, the distanee, therefore, ean only be about one inch; and this distanee must of course be lessened when either is dilated by a hernia. Besides this mode of judging rela. tive position, I know of no otber whieh eam answer the purpose so well. As to the chaborate seale of measurement drawn up by some emineut surgeons with a view to determine the exaet position of each ring aecording to its distance from the iline spinous process and the puhie symphy. sis, \&ce, surely the ever-varying proportions of individuals of both sexes and of either, monst render it of little or no utility. The judgment, not the rule and compass, must he the measurer of organic nature, when we would seek a mean proportion.

In the foregoing deseription of the anatomy of the groin, I endearoured to realise, demonstratively, the iden of an inguino-serotal-spermatic canal, (reuehing from the internal ring to the testiele) as naturally formed (by reason of the deseent of the testicle) of all the layers of inguinal struetures suceessively, from the superfieies invaginated the one within the other; and all in that order giving investments to the spermatie ressels -the only exception to this, being the peritonemm, hut we know that this execption does not exist in the foetal state, and that it results in the adnlt only by an after process of metamorphosis.

Trie order in which the herniary howel takes its investments from the struetures forming the parietes of the inguinal region is, of eourse, precisely the reverse of that order in whicla tbose structures present them. selves in the dissection from the cutaneous superficies. The innermost layer of the groiu is the peritonrum; and from this membrane the intestine, when about to protrude, derives its first or immediate covering. This eovering constitutes the hernial sac. Almost all varieties of inguinal hernia are found to he enveloped in a sae, or elongation of the peritonxum, especinlly when the hernia has heen of slow and gradual formation, and when its contents consist of small intestine or omentum, or both: for as those parts hang free agninst the inner surface of the groin, they cannot eseape from the abdomen so long as the peritonanl lining is entire, unless by dilating the portion of tbat membrane which is opposed to thenn. Under those circumstanees, and in respect to those parts, therefore, the hernin must be always contained in a sae; and in the instances where this does not exist, the absence of it must be due to different conditions and in respect to different parts: the eceenm, which is devoid of a mesentery, and only partially eovered by the peritoneum, which fixes it in the right iliac fossa, may be so forced from inder that menibrane as to protrude externally, without a covering of it; the same may perhaps happen in regard to the sigmoid flexure of tbe colon. But wben the small intestine or omentum is herninry without a sac, this state most be owing to a rupture of the peritoncum oceurring on sudden pressure, and allowing the viscus to pass free tbrough the rent into direct contact with the more superficial structures. If, in such a case as this, the parts were disseeted immediately after the occurrence of the aceident, there can be no doubt that the peritoneum, instend of being pusbed forwards by the bowel, would present a defined margin at the place where the rupture first was made. But it very seldom, if cver, happens that the parts are inspeeted at such a time, and consequently not until they lave undergone those changes which supervene on the lesion of living structure. When tbose chnnges bave been efficeted, the signs of rupture of the peritonxum are obliterated, and that membrane then appears as if it had been dilated before the bowel, for it is uow continuous with a sae of some kind, thongb the structure of which this is formed may never have been produced from the serous membraue at all. Now, if it be only from the presence of n sac, without regard to its kind or the mode of its formation, tbat we are to infer that it conld not exist unless by dilatation or pouching of the peritonemm, it would then follow that as all hernise (containing sinall intestine or omentum) are enclosed in a sae, so the original fault which admits of those aceidents conld never be a mpture of the peritonæum. ' Sueb would seem to be the doetrime at present entertained according to the faets as now stated. But still I think it may be asked, is this doetrine as reasonable as it is prevalent, while we have yet to inquire whether or not it is possible for a sac to be formed, similar in all outward appearance to serous membrane, and continuons with the peritonenm, thougb this, from having heen ruptured, eould never have suppbed such a sue? If this be possible, and if, at the same time, the anatony of the groin and the strneture of the peritonzum so answer inquiry as to oblige us to admit the greater probahility of rupture of that membrane, then it is evident that even the presence of a sae eannot unsettle that conclusion. The namer in which the hernin affects the peritonxum, whether by dilatation or by rupture,
need then no longer be a moot question, for a sac would exist in either case.
As to its physical charaeters, the peritonæum exhilits no appreciable differenee in the living or tbe recently dead snbject. In both it is equally resistent, extensible, dilatable and lacerable on cicecss of pressure. Its elasticity is a property manifested in no wery marked dacgree beyond that of fibrous membranes. The shin is much more extensible than it, and so bkewise is the common eeflhlar membrane. The degree of distension to which the abelominal parietes are normally subjected is, perhaps, the full limit which the peritonaum, under snden pressure, can admit of without lesion. It is true that, in ascites and pregnanes, the membrane undergoes a very great inerease of surface, but then the whole membrane under pressure can, by reason of its large extent in duplication, allow of tbat incrense, which would not be possible with auy single small part of it; and, moreover, the distension of it :as a whole is effected not suddeuly, but in a very slow and gradaal mamer. The dilatability of the peritonaum in the formation of a bernial sace camot, therefore, be judged of by inference from such cases; for these and liernixe do not affect the membrane meder analogous eireumstances. A viscons is forced ngainst a part of the peritoncal parictes, seldom more, and frequently less, than nu inch in circumference; and of this portion of the membluane we are (under the supposition of its remarkable property of distension) taught to believe that the hernial sac is formed. But wben we compare the size of the abdominal entranee of even a small hermal sac (hubonocele) with the supericial evtent of its interior, we find so great a disparity between them that, even admitting such a eapability of the peritonaum for distension as would be only short of the fabulous, we canuot reasonably vonch it as a possibility that so small a part of the membrane eould yield so large u sue. And while this is the ease in reference to a heruial sne in its first stage of formation, how much more forcibly does that conchusion seem deducible from the instanees of serotal hernin, which, thongh originating bike a bubonocele, attains, in process of time, such magnitude as to be little less in capacity than the abdominal chamber itself. Iet scrotal hernire are furmished with sacs of serous ehancter, forming the inmediate investment of the bowel just as in the first stage of their production. While such broad contrasts of pathological conditions as that of a bubonocele and the largest-sized serotal hernia are under notice, it is betle to be wondered at if the doctrine of sacs formed only by peritomanal distension should seem untenable. And accordingly, those who adhere to that docerine find is to require support, and assume either an incrense of the sne by successive protrusions of the peritonsum at its neck, or by a growth of the sac from interstitial deposit. Both thase modes of incretse are, however, not such as the state of the parts would iuduce ns rensonably to credir. If the peritonemm, as the inguinal lining, were luosely pheated instead of being, as it is, laid evenly adherent to the other purts, one might believe an extension of the sac as possible by an unlulding of the membraue, but not otherwise: and ats to the growth of the small ponch of a bubuocele to a capacity so great as it oftentimes attaius, this belief cannot be better founded than the one that, iu a case of thoracic aneurism protruding externally, the actial coats of the norta are still to be discerned as having nodergone dilatation or growth to that extent. In sucl an aneurism the parietes of its sac have been suecessively formed

TIGURES OF PLATE XXIX.

External ouliquo
Fig. 1.-External inguinal hermin-A, Spincus process of inum. Tansusshlis muscle.

of every structure with which, in its progress, it came in contact; and so may we infer it to be with the sae of a hernia. The analogy hetween both cases is not orerstrained: in the ease of nomism we hare the blood under pressure of the heart forcing the conts of the artery, and dilating these to such a derree of tenuity that they must of necessity be ruptured, but that adjacent structures suprly their want by forming the parietes of the nocurismal sac. In the ease of hernia we have the bowel, under pressure of the abdominal walls, forcing the peritomeal lining, and, if not rupturing this at the first cffort, dilating it to such an extent that, weakening, it must finally sutier rupture, and give phace to other atructures for forming the hernial sac. While, therefore, as it would gecon, the perionwum is of that quality which can sustain but a limited amonnt of pressine, and while, moreover, whether it be ruptured hy force of the first, second, or third degree, we cannot then regard the sac, as it presents itself entire in disscetion, to lave been formed by dilatation of that membrour, it is clear that, wherens the sac nevertheless exists in all cases after a time, its formation must depend on other cir cumatances, and these appear to me to be the following: The bowel, under pressure, either ruptures the peritonmum at first, or, after foreing that mombane to gied lefore it to a certain limited extent, ruptures it ultimutely, aud comes into coutact with the more superficinl parts. Those parts are then, by eontact with the lowel, suljected to a process by which their origiual surfice-character is churged for tlat of the orgnn to which they are opposed. The pressure of the bowel and its scrous secretion surve to smonthen and lubricate those structures; and thins they become, to nll outward appearanec, assimilnted to it. In this maner the bowel becomes the maker of its sac, and fits itself necording to the rolnnce of ite protrusiou, Such a sac is therefore to be rugurded not as a production of the peritomeum, but as an adveutitious addition to that memhrane. is sueh, therefore, it must he erident that the reduction of it with the herniary bowel into the abdomen is in all respects contraindicated; for as the peritonsum neser furnished a quantity of itself equal to the rolnme of the hernial sae, so that membraue docs not require such a quantity to be restored to it. To snma up, then, I would say that the name "rupture"-a name which agrees with the experience, from schsation, of all who are the subjects of hemia-may be taken in a more literal meaning thas is generally agrced to. For convenience sake, however, I shall, in the description of bernia, regard, as nsulal, the suc as if it were a production of the peritomeum, since, whether this be the mode of its formation or not, the two membrance are always contimons at the ahdominal rings.

All hemie which originate in the groin above Poupart's ligament are nanued ingninat. Of these, different varictics are recogniscd, orring to the particular parts of the groin where they first appear, and also from certain congenital annomical peculiarities. When the bowel enters the inguinal came loy the internal abdominal ring on the outer side of the epigastrie artery; the hornin is catumal inguinal; and as it takes the direction of the canal inwards and downwiuds to the pules, it becomes obligu; while yet within the canal it is incomplate, or hubonocele; when it protrudes through the extermal ring it is complete, and when it has renelued the testicle it is serutal. Whien the bowel forces the inguinal wall on the imer side of the epigastric artery, and appears innediately through the external ring, the heruia is internat, tirect, and complete; and having descended thence to the testicle, it also ljecomes serotal. The cougenital lerain, so named from its oecurring in consequence of the peritoneal spermatic canal remaiping almormally pervious after the testicle has desecnded to the scrotum, is nccessarily ulways of the external ablique kind; but a direct internal heruia enn never be aseribed to that original defect, even when co-cxisting.

The cabroul inguinal hermia, when abont to be formed, forces the peritunewn at the external peritoneal fossa, and carries before it, through the intermel ring, an investment of that menbrane into the inguiual canal. In this incipent stage the lermin in its sae is altogether external to the epigntric inul spermatic vessels. In this and all further stages the bowel is separuted from the ressels by its enclosing suc; and this, with them, is invested loy all those liayers of structures of which the inguino-serotal spermatic canal is eonstituted. The bubonocele, now passed throngh the internal ring. points at first midway betreen the iliac spinons provess and the puhie symplysis, and continues to increase; hut as its fiuther progress from bebinid directly forwards is arrested ly the tense resisting fuon urosis of the extcral oblique muscle, this structure chmyges its course to that of ohliquely inwards and downwards in the direction of the external ring. Int this stage of its progress the only purt of the hernia which ean correctly be deseribed as external in referenee to the epignastrie nitery iv the neck of its sac; for the elonguted
hody of the hernia is now netually an a plane anterior to thet yessel
and in respect to the median line, internal to it. Moreover, as the hernia bends in front of the epigastric artery, this vessel is separated from the anterior wall of the inguinal canal at an interval equal to the diameter of the nuek of the sac. The relative position of the spermatie vessels is not affected in the same manner as that of the epigastric during the progress of the hernia. As the spermatie vessels bending over the outer side of the epirgastrie nre internal to the neek of the hernia, so this, descending in their course, must be in front of them, even when it reaches to as low a level as the testicle in the serotum. This position of the spermatie vessels may be regarded as constant in respect to the middle and upper parts of the herniary sac, but not so as regards its lower part. When the hemin is scrotal, of long standing and large size, the spermatie vessels are liable to be sundered from eacli other by the fundus of the sne, so tbat sone of them are on its fore part, others on its outer side; but on tracing them liom the testiele upwards, they will always be found to wind towards the posterior surfaee ol the sae at the situation of the external ring. However large the hernia may be, even when it is scrotnl, the testicle is invarinbly below it. This position of the testiele may be aecounted for anntomically: the envelopes of the spermatic vessels are attached so firmly to the coats of the testiele as to prevent the hernia from cither distending and clougating them to a level helow this organ, or from entering the tunica vaginalis. Such heing the condition of the parts in connexion with the ordinary form of extermal inguinal hernia, there can be no difficulty in determining the proper line of meision in an operation. If the parts superficial to the heminal sac were byided along its middle from opposite the internal ring to the serotum, ueither the epigastrie nor spermatie vessels would be injured.
In the feuale, the external form of inguinal hernia is comparatively rare. When it does appear in this sex, its position, investments, and course through the inguinal canal, where it follows the round ligament of the uterus, are the same as in the male. And even when the hernia escapes through the external ring of the male and of the female, its anatomieal relations differ simply according to sexual peculiaritics of form. In the male body, the testicle and spermatie vessels, whieh in their descent have earried hefore them tubular produetions from the several layers of inguinal strnctures, lave, as it were, already marked out the track to be followed by the hernia, and prepared for it the investments; so that, whether it be within the inguinal eanal or the scrotum, or at an intermediate situation, the same kind of struetures cover it. In the female, the hermin, hawing passed through the external ring, from whieh no spermatie cord depends, lodges in the labium pudendi; but when we compare the anatomy of hernia in this sex with tbat of the other, this appears the only distinguishing feature between them. The investments whieh the testicle has already prepared for the hernia in the male are attained, in the female, of the very same number and kind, by the lierma itself imitating the descent of the testicle. This, indeed, might be inferred to be the case, even if dissection lad never proved it to be so. When the bowel foress the peritoneum at the internal abdominal ring of the female, and enries forwards a sae from that membrane, it takes a seeond covering from the tubular process of the firscia transversalis, which follows the round ligament, and then, traversing the inguinal canal, it loosers :and extcuds before it the fibres of the intermal oblique and transversalis muscles, and thms obtnins a cremasteric envelope, which protrades on it through the external ring, the borders of whieh latter also give off to it a fibrous covering, and enelosing all the others, is to be found the super. ficial fascia, \&e. Tbe anatomieal identity as to relative position and investments heing thus not only possible, but actually appearing in the external ingninal hemia of both sexes, the differenee as to the frequency of its occurrence must he due not to the abscnce of any of the defensive parts in cither, but to the less efficieney of the structures in this charaeter: The monscular parietes of the male groin, from which the loose eremaster is alrendy formed, have from this circumstance become weakencd, and rendered nore so by the testicle having derived for the spermatie cord cavelopes from all the other straetures likewise. But in the female groin, where no such process has oceurred in early life, the bowel underpressure is the more resisted ly the parietes when fully developed, being thicn compret at the point where they transmit only the uterine ligament.

The internal inguinal hernia is formed at the triangle of Hessellach, corvesponding with the internal peritonæal fossa. The bowel at this situation forces the peritoneum at once directly forwards through the external ring, and earries an investment of each of sueh other structures as are here opposed to it. The external ring being opposite the centre of the place where the bowel derives its sae, the protrusion of the hernia is therefore direct, and, as such, although appearing through the groin at the external ring, whieh also transmits the external hernia, eamot in any case have the same amrtomieal relations as the latter, either as
regnrds the inguinal eaunl, the epigastric, or the spermatie vessels. Unlike the external hernia, which bends from outside those vessels to take a prosition in front of them, the interanl hernin, passing direetly through the groin on the inner side of the epigastrie nitery, has this ressel always outside the neck of its sae, either in close connexion with this part, or at some distance from it, according as the neek is wider or narrower than usual; whilst the body of the sac, from the neek forwards, is altogether free of that vessel, and, from the first to the last stage, situated hetween it and the pubie median line. The relative position which the spermatic vessels have in respect to this form of hernia, may the inferred from the anatomy of the parts concerned: the spermatic cord, approaching the external ring from the outer side of the epigastric notery, and the hernia, passing through that ring direetly from behind nud on the inner side of that vessel, it must happen, (as it always does) that the cord is either external to, or hehind the hernia, throughout all stages of the development of the litter, even to where it hecomes scrotal. In the same degree, thercfore, that the hernia distends the external ring, the cord will he found separated from the crista pubis, and constricted hetween the adjacent outer sides of the ring nud the hervia. Ahove the external ring, the eord, passing in the direction of the inguiual canal, parts frou contact with the hernia; bat helow the ring, the cord, becoming stretched upon the onter side of the hernia, when this is of large volume and scrotal, we find that the spermatic vessels are liahle to sprend and to he separated from each other. With regard to the position of the testicle, it varies aecording to the volume of the hernia and the mamer in which this affects the inguinal eamal. If the lerema he small, the testicle will depend helow it; it large and scrotal, the testicle may he either on its outer side or behind it, As the coverings of this hernia, though heing of the same kind as those which invest the extermal variety, are, in ordinary cases, taken from a different part of the groiu, it is hence possible for the former to descend to a lower level than the testicle. But if it happen (as it may do so) that the internnl hernia enters the inguinal emal and descends through it, thus having its eoverings of the same part as the external variety, then the testicle will necessnrily he, as in the latter case, always helow the fundus of the sac. The position of the vessels heing on the outer side of the direct hernin, forbids the ineision in an operation to be made on that side. This caution is equally to be ohserved whether the hermin has entered the inguinal canal or not, for the vessels in cither case will he still on the outer side of it. But there is, in fact, no necessity, in any ense, for incising the parts in this situation, with a view to blicrate the stricture of an internal hernia.
The investments of the internal inguinal hernia, though not denived exactly from the same locality in the groin ns those of the external variety, are, nevertheless, hut different parts of the same strmetures. While the external herma, following the course of the spermatie vessecs, may he snid to have all its coverings, with the single exception of the sac, already procluced for it, the internal hernia, which emerges direct through the external ring, has to form all its own. The bowel, pointing hehind the external ring, takes its eoverings of the structures in the order in which they are opposed to that opening; and though we uumber them separately, it should he remembered that they form, as it were, but a single layer, owng to their apposition and structural union: those structures are, 1st, the peritonæum, whieh hecomes the hernial sae; ?nd, the public part of the fascia transversalis; 3rd, the conjoined tendon, or (according as the hernia protrudes further from the mesial line) the eremasteric filres, which, in common with those of the internal oblique and transverse museles, end in that tendon. When the hernin, enclosed in these structures, engnges the external ring, it takes its more superficial coverings from the same parts, and in the same mamer, as the hernia which deseends the ingumal eanal; thus the exterial spermatic fascia given off from the margin of the external ring forms the the corcring, and the superficial faseia and integument the 5th and 6th. But thongh the structures in the normal state of the groin present themselves, in dissection, of this order and mumber, it does not always happen that
they can be so pluinly distinguished while covering a hernia: accord ingly they are, eapecially as regurds their number, varionsly deseriled hy dissectors. Thas, with respect the the congined tendon, the hornia is said, in some instances, to take al. investment of this structure; in others, not to do sie, lat to phas through a cleft between its filmes; in others, to escape aside of its outer marein. Agrin, the cremaster musele is stated by some to corer this hermia ocensionally; hy others, never to do so. Lastly, it is donbtel by some whether this hernia in even covered, in all instances, by the fascia tronsversalis. Such being the diffirence of high opinion as to those nnatomical priuls, one is inquisitive to know whence it arises, and to detcrumine if the matter has, in reality, the practical import which it wordd seem to have.

When the parts of the groin are considered, as to their relative posi tion, their form, their kind, and their other conditions, we may renilily understand (if distension and protrusion he the mamer in whidn the pressing howel affects them) of what kind and number the herniary investments are or should be. The external ingninal heruin, in the inguinal canal, should linve a sac derived from the peritonenm; a fasein proprin, from the infundilaliform tulse; a cremaster; from the internas] obliqne and transverse museles; an aponeuratic juserin, from the tendon of the external oblique; and enclosing these, a strpcyicient fuscie. Auy variation in the number and kind of these roverings cmanut happen if they exist, and hecause each one of then is of miforn pisture Morcover, neither of them can be absent, in consequence of the humia rupturing it and passing through the hiatus, fur they are all, except the pritoneum, alrendy protnided over the spernatic vessels. But erussing that space (triungle of Hesselbach) in which the internal leernin veenrs, we find some of the ingminal layers varying in kind at me puint from what they are at nother, and therefure, at whichever of those points the hermia protrudes, of course its coverings must vary in kind also. Besides this, if one of those lajers he prescut at vac point and ahsent at another, it is evident that the number of 'ermiary coveriugs uust vary according to the point where the hernia protrudes. Alled to thonse circumstrnces, we have the greater liability to a mupture of one or more parts, which, varging in resistiug power, are ofpmsed point hank to visceral pressure, as they are at the trimugle of 1 lesedluach, tham where they are already ponched reeipients, as at the internal ring. Under those conditions, we may judge, it prieri, how zmelı more mume rous than perhaps would be advautugeons to reckon may be the warieties in respect to the coverings of an internal inguinal hermia. It wal sutfice to notice the more prominent ones: 1st. If the comjoined temblon bu dense in testure, and so broad as to shenthe hearly the whole of the triangular sprice, it will be mueh more likely to ullow, ly a seqnration of its fibres, a hernia to pass through the external ring, them by its uniform distension. In the former ease that tendon will not cover the hernin. 2nd. We might expect that the tramsversonlis: fiscia, if nut also the peritonaum, whilst fureed throngh the sharpedgul elefe of the tendon, will he ruptured, in whieh event they would also tiil as coverings of the hernia. 3rd. The nbsence of the conjoined tendou as a herniary covering must ensue if it be so narrow ns not to defend the external ring. 4th. If the conjoined tendon lo on the inner side of the externul ring, the museular fibres of the transverse nad internal ablique will reach it in this phee, and the cremasterie fihmes will also he attached to it, and hence, whea the hernia passes through the ring, it must carry forwards a cremasteric envelope. Surely we need not a confinuation of these views trom the future experience of dissuctors. fir the matter is selferident, us is the quantitive difierence between $a+b$ in one place, and $a-b$ in another. But we have still to ank of what iuportance it is to the practical surgeon, aud in what rwspect it influences his operation on the hernia?
The temale is wuel more rarels the sulject of direct inguinal luernia than the male; hut why this is the case is not accoumted for in the anatomy of the parts. Indeed, if the contrars happencd to be the fuct, it would be easier to explinin it; tor, tugether with the circumstance of the inguinal parts not generully leing so developed na those

FIGURES OF PLATE XXX.

[^6]Fig. 2.-Exterand and intermal inguiund hernie co-criating-otiger ports leternd an in
 tig. $1 .-$ Fin of uxturau beraindoscending in their sheathe null lying on the outer nido of che internal bromin
of the male, the space measured between the epigastric artery and border of the rectus muscle is relatively wider in the female, and hence more exposed to visceral pressure. Perlaps it is that the infrequeney of the ocenrence of hernia here strikes attention the more from the frequency of its happening elsewhere. At all events, the only fonture which appears preventive of this hernia in the female is the smalluess of the external ring compared with that of the male, the former transmitting ouly the uterine ligment. That the internal inguinal heruin is not so liable to oecur as the external, either in male or female, is explained by the anatomy.
The crternal and internel hemio having been now described separately, it remains to consider them as conexisting, and also as simulating the one the other. In both thooe eases we shall find that the only permanent anatomical line which in all instances divides them, is that drawn by the epigastric artery: When a heruia enters the inguinal camal outside the epigasturic artery, und another hernia passes directly through the external ring, that resect is alwnys between both, nud oceupying its usual positiou. The existence of that vessel neeessitates the existence of n distinet sae fior each heruia, hecause it is superficial to the peritolremm. On viewing the posterior surface of the groin, in a case of double hernia, the ouljecent borders of the necks of the two saes will be observed to be separated by the width of the epigastric artery only; for genetally the cord of the umbilieal artery, which accompanies the epigastric, is pushed so close to that vessel, as not to increase the intervul. lietween the necks of the two saes, inferionly, will be found, closely congreegnted, the epigastric vesscls, the mobilical cord, the vus defercus, and the spermatic vessels, passing in front of ench other conversely to the order mamed. The abdoninal inlet of the external hernia is alvays above the iline artery, while thant of the direet hemia is above the iliue vein, the vessels respeetively being only separated from the herniary openings by Poupart's ligament. But the situation of the numbilical cord is not always that of the epigastric artery. 'The cord, in many instances, ascends the middle of the triangle of Hesselbach, dividing this space into two, and thereby rendering it possible for an internal hernia to occur on cither side of it. If two internal hernix co-existed, then the imbilical cord would alone scparate them; and becunse it is (like the epigastric artery) sulurficial to the membrane, it would hence occasion the formation of distinct sacs. We have, then, from the auatomical disposition of the formative parts of the groin, an explanation of how three hernix may exist in a row-one being external to the epimastrie artery; another hetween that vessel and the umbilical eord; and another between the cord and the margin of the rectus muscle. But wlule the three may oceur always with equal facility, as regards the peritonzum, other strnetnres, from being disposed differently to that momhrane, do not allow of this. The inguinal canal, already firmed by the transversalis fascin and the other more superficial structures, readily ulinit the exterual hernia to descend it; in next degree as to facility of formation, is the hernia which arises close on the inner side of the epigastric artery and between that vessel and the umbilical cord, -for here the hernia may also enter the inguinal camal; while the hernia which forms butween the cord mad the reetus muscle, is that which has least fucility to pass, in consennence of the interposition of the conjoined tendon. When, therefore, the eord does not divide the triangle of 1 lusselbach, lout bes sidelong with the epigastric artery, the internal heruia will be found to arise more generally (as being the more passable place) elose to the epigastric, and between this vessel and the borker of the conjoined tendon; which latter, if it be marrow, will leave the externul ring more accessible. But there are reasons why, in a case of duples or triplex hermin, they should linder the development of each other. In all instances of this kind that have come under my olservation, I have notiecd that ouly one of the tro or of the three is in that stage of progress which is named complete, that is, passed the external ring. The rationale of this appears to me as follows: When two hernime orcur at the same time, one on either side of the epigastric artery, or of the umbilical cord, they must comuterbalance each other while risceral pressure affects both equally; for the peritoneum and other mambranes, which by dilatation envelope the one hernia, cannot nllow this to progress su freely as they would if the other hernin-whose "uvelopes are formed from the ssme structures and in the like mannerdid not exist. But when visceral pressure canses the one hernia to prepronderate more thom the other-an effict which is furthered ly the greater weakliess of the parts where the former occurs,-then this must take precedonce, nud, in the degree of its own advanceraent, must urrest that of the ather. Noreover, white two or more hernix muny origunate at the pasterior surface of the groin, the first of them which traverses the external ring will guard (by occupation) that outlet
against the others; so that, though three herniæ may in reality exist, only one of then will show exterually. From this it would seem that the hernia which occupies the external ring is the first to have arisen; but if such conclusion does not follow from the faets noticed, it is at least quite evident that this heruia has had a quieker deseent than the other, or either of the others existing. Instances of the co-existence of external and internal hernix are not at all uneommon. They have heen met with by Wilmer, Arnaud, Sandifort, Riehter, and others. Our own and foreign muscums furnish many examples of them. A plurality of the same variety of heruia is said, also, to have been met with on the sameside: a complete and incomplete external inguinal hernia, co-existing in the same groin, is recorded by Aston Key. And Sir Astley Cooper (Inqui. et Congenit. Hernic) states his having met with three interual ingninal hernio in eaeh inguinal region of the individual. Such eases are, however, known to be very rare; and eertainly, if they were otherwise, it would puzzle us much to know where to look for this ever. obtruding interjection of an epigastrie artery; for while, in its imposing charncter of a tertium quid between two herniary memhers, we can pronounce, with some degree of certainty, its whereahouts, it loses that character in a crowd of them. That the numher of hernix which have appeared external and internal to the epigastrie artery should douhle or triple that which ordinarily occurs is, however, if somewhat inexplicalle upon the normal condition of the formative parts of the groin, not so when their alnormal condition is considered, for we can understand a hernin arising in any place where the weakness or failure of parts renders such plaee indefensible and passable.
While the epigastric artery is in all cases the boundary line between the place of an external and that of an internal hernia, whether only one of the two hernix exists, or both eo-exist in the same individual, we find that the eharaeters oulique and direct, which serve, also, in many instances, to distinguish those hernix, are liable to be assumed by each. The bowel which enters the inguinal canal by the internal ring on the outer side of the epigastric artery bends inwards, and directing its course thence to the external ring, may he considered to hang suspended from that vessel. Subjected, thus, to the weight of the protiuding howel, and the weight inereasing according to the volume of the protrusion, the artery, having nothing to sustain it but its cellular attachment to the serous and filhous membranes, between whieh it is situated, yields with the hernia towards the median line. The internal ring, being in this manncr bronght opposite to the external one, the oblique direction of the inguinal canal between them is ehanged to that of straight, from hehind, forwards; and the hernia, of eourse, undergoes the same change, appearing now ns though it were originally direct, but still having the epigastric artery on its inner side. The spermatic vessels follow the artery to its new position, hut in doing so they beeome scparated from each other behind the neck and body of the hernia. This change of plaec of the artery, hy yielding inwards before the neek of the sac, is gradual, and not fully accomplished till the hernia becomes scrotal. When in the scrotum, the bowel gravitates most, for here it is comparatively unsupported, the extensile cuvelopes constituting this bag falling before it, and the tortuous spermatic vessels nnwinding themselves hy its weight. In coutrast with this form of hernia-which, from heing oblique and external, beeomes dircet, though still remaining external to the epigastrie artery-we liave that form of hermia which, though internal to that vessel, is, at the same time, oblique, having entered the inguinal canal close to the imer side of the epigastrie artery, by parting this vessel outwards from the inner horder of the internal ring. On examining the disposition of the membranes and the vessel at this particular spot, we shall find that there is nothing but the interposed peritonsum and subserous tissue to hinder the bowel from entering the canal bere. The pubic part of the fascia transversalis, and the funnelshaped sheath of the spermatie vessels, are contimuous at the inner border of the ring; and close to and behind that border the artery ascends the groin. The fascia and the spernatic shenth which is produced from it and turns inwards to the external ring, he in contactthe sheath in front of the fascia, so that the bowel, dilating the peritonreum between the inner border of the ring and the artery, has only to unfold the fascia and contiguous part of the spermatie sheath in order to enter the camal on the inner side of the vessels, the spermatic as well as the epigastric. When entered into the canal in this manner, the bowel, in its serous sac, takes then the direction of the exterual ring, just as if it entered the canal by the internal ring on the outer side of the epignstrie; and in both cases the bowel is separated from aetual contret with the spermatic and epigastric vessels only by its serous envelope. But though the internal hernia thus actually gains aecess to the canal by the internal ring, its obliquity can never he so well marked

ns that of the external bernia; for the latter has its neck supported by the artery on its inner side, while the former must, in order to enter the canal, part the inner border of the ring from the vessel and in the same degree as it obliterates the fold of the spermatic sheath and pulbic part of the fascia transversalis, it must slorten the postcrior wall of the canal, and so appear less oblique, nnd as to this feature, intermediate hetreen the external hernia and the one which ${ }_{1}$ passing throngh tbe cxternal ring direet, docs not enter the conal at all. In the case of internal hernia-which is oblique, from having eatered the inguinal enmal-we generolly find the umbilical cord on the inner side of its neck. The epigastric artery, and the umbilical cord having been originally separated the interval between them is the place of the herniary protrusion. When the umbilical cord is at the centre of the triangle of Hessellach, the hernia which oeeurs between it aud the conjoined tendon camat enter the canal; and this hernia is then truly direct, for all its envelopes are derived from the parietes of this interval, and protruded at once through the external ring, where, for the firot time, the spermatic cord and it come into contact. Between the howel of a truly direct hernia and the spernatic vessels, are interposed the envelopes of each-two sets of envelopes from the same inguinal structures.
The diagnosis of the external and internal inguinal hernix from ench other cannot, by any mode of comparison or other means, be correctly ascertained in reference to the epigastric artery, except by the signs of ollique and direct. And while we know that hoth herniæ offentimes interchange characters in respect to tbose signs, a doubt must cever attach to them. The nearer the neek of the one hermia approaches the usual place of the other the more likely, of course, are they to he mistaken the one for the other. While an internal hernia may enter the inguibal canal as well as an external one while between the two the epigastric artery alone exists ${ }_{1}$ and morcover, while both, taking the direction of the external ring, appear oblique, the difficulty of distinguishing them must ho olvious. It is only when the external and internal hernio protrude through the groin at an interval between each other corresponding with that beturcen the two abdominal rings, and when they tlus manifest their broadest contrast, thant we can judge with some degree of accuracy the place of the epigastric artery relative to cither, and that the following diagnostic signs can be observed: The external bubonocte first occasions a fulness in the groin at a situntion midway hetween the iliac spinous process and sympliysis pubis ${ }_{1}$ and above the inguno-fenoral groove. This is the plaee of the internal ring; and the hernin, extending thenec towards the external ring dilates the inguinal canal and a $_{1}$ like this, appears oblique. While the hernin occupies the canal without na yet appearing through the external ring, the unusual fuluess of the former part is readily pereeptible, notwithstanding the restraint caused by the tendon of the external oblique muscle. Together with the fulness and teusiou of the canal, an unnatural clasticity of it is olservable on pressurc, and also n gurgling noise, from intestimal matter under peristaltic action. When the hernia has passed the external ring it dilates considerably y_{1} and assumes the form of an oblong swelling pendent in the course of the spermatic cord. On the back part of the hernin we may now feel the spermatic vessels ${ }_{1}$ and trace these as far upwards as the extermal ring, which they enter in the same position relative to the hernin. The swollen ingninal canal above the external ring and the herniny dilatation of the cord helow that aperture will now indicate phanly the oblique charncter of the hernin; and taking also into consideration the position of the cord and testicle, its external situation in respoct to the epigastrie artery may, with very great probability, Le anoounced. The intermal hernia, on the contrary, first manifests itself at the exteranl ring, if the howel protrudes directly from behind that aperture; and in such case there is no fulness or other unnatural feature abont the situation of the inguinn canal. When passed throngh the external ring this hemia appears of a globose shape ${ }_{1}$ and covers the spine and crest of the pubes.

It has the cord on its outer side and sometimes spread upoll its front: and in tracing the spermanie vesscls to the most depending part of the hemia, this will appenr as though it were not invngiunted in the sheaths of the cord. The testicle, moreorer, does wor ocrugy a situation (as it does in external hernia) exactly belientlo the fundis of the suc, hat appears cither at its forepart or its outer sile correspouling with the cord. From those signs its charactor, as direet, is at once very apparent, and from them may also he inferred, in most cases, its internal position in referenec to the epigastric artery. As to the: hernin, which is intermal to the epignstric artery, and yet ollique, from having enteral the connal, Who shall distinguish it from either of the others by any mark observable on the cutancous superficies, or untal we have the fact revealed in disscetion or an operation? It is crident, however, that though internal to the epigastric, it would have the spermatic vessels outside it. But us to the hernin, which, itom being origiually exterual und oblignte, betomes, under visceral pressure, direct, thongh still external to the epigastric artery, we have more cortain means to indieate its anatomical unture, for the testicle and cord retain, fur the most part, the same relative position to this hernia that they had when it was first formed; while the feot of its scrotal situation and its long standing complete the evidence of its naturc. When there exist more hernis than one the diffeuley if thistinctive diagnosis increases in the ratio of their number. If twn oblique hernis protrude, it becomes impossible to sny which of them has the cqigastric artery on its inner side. Aud if two internal heruise exist, the one ohligne and the other direct, it cannot be knows tile eertainey that the artery is not on the immer side of the forner. Again, if two heraie, the one oblique and external and the other direct and internal, co-exist t_{1} and one of them be past the cextermal ring, such a case cannot, while the parts are masked by the integuments, bu distingnished by any sign from in complete external and oblique hernia; for the swelling in both eases must be of the same size and form, and appear of the same relative position. In this case of donble hernia the epigastric artery would he between the sacs, lolding its usual prosition with respect to each as when ench occurs alone, that is, on the outer side of the direct hemia and on the iuner side of the oblipue one. Bur thongl, in the ense of double hernia co-cxisting a donlat must attach to the situation of the epigastric always, yet the position of the cord and testicle remains unaltered, as an indication of whicli of the two is complete; for it the oblique hernia were a hubonocele while the direct hernia were scrotal, the cord would be on the outer side of the latter from the external ring downwards, nnd on the inner side of the former from the ring 川uwards, through the inguinal cunal. And if the direet hermia were a huhouseele, while the obligue hernia were scrotal, the tesficle would be below and the cord helind the latter, just in the same way as if this exited alme. Froun these obscrvations it will appear that the relative position of the testicle and cord is, thongh not infatibly a diagnostic sign of the anatomical wariety of inguimal hemial, yet the most certain proot we posscess.

Amongst those disenses which more or less simulate an inguinal hernia the following may have is brict anatomienl notice: 1st. Lymp/hatio hodies in a mass might, when lyiug ahove Poupart's ligament, and intlamed, appear as a bubonocele projectiug at the internal ring; but they eum be distinguished from the latter hy their molility hetween the integrument and the inguimal aponenrosis, and hy the existence of ulceratimn of sonne part of the genital organs and $_{1}$ by the alsence of visceral obstruction and heraiary impulse on coughing. 2nd. The festicke, if arrosted in any part of the ingninal cman, would canse a tmmour, which nivht be mistaken for an ineipient hemin. If the testicle were in the situation of the internal ring it might appear as nin external hulhonocele; if in that of the external ring, it would he where an internal direct hernia first appears. But in such a calse the abscnee of the testicfe at the corresponding side of the scrotum would be sufficient evidence of the fict as it exists. 3 rd . Psonas abseess, when forming a tumour in the groin, is luctuant, and alsnys

FIGURES OF PLATE XXXI.

parts lettered ns in Fig. I.-C. Nick of eno of exteroul inguial hernin-D, Seck of sac if intorual inguisal leevia.

Fig. 3.-Kisterual inguival bernia-nemalal-A, Spinous [rocess of iliuln.- 1 , spimo of

 , Arinitul

Fig. 1.-Ablaminal appect of oxternal ingrimul heroin- A, Spinous proces of illem.

 3. Spermatio vessels-4, Vas deferens- 6 ,

points. below the middle of Ponpart's ligament in the direction of the femoral vessels, and hence cannot he mistaken for any form of inguinal hornia. The mutter produced from caries of the vertebre descends, hy its own gravity and by risceral pressure, alwnys henenth the iliac $p^{\text {mort }}$ of the faseia transversalis and the peritonemm; and hence is more likely to Mass through the femoral than the ingninal sheath of the fascia. Ath lydeoctl of the tunica raginalis, if this membrane be a sae distinct from the peritonaum, may readily be ristinguished from serotal hernia, even by a comparison of their forms. The summit of the hydrocele is definahle in the cord, which it nscends not higher, genemally, than the crotum. From the upper horder of the scrotum over the inguinal rerion there is no abnormal swelling; the spermatic cord can here be felt of its natural ealiber, rising to the extermal inguinal ring, which could uot, of course, he the state of the cord if a hernia had descended througb it, which this must do in order to oecupy the serotum. In a hernin (not ongenital) the testicle can always be felt below it, if it be ollique, and an the outer side of it, if it he direct; but in a hydrocele the fluid about the testicle prevents that, organ being perceived by touch. A hydrocele is diaplanous, und nllows of the testicle behng distinguished as au opaque budy nt the hack ol the serotum; it fluctuates on pereussion, and docs not manifest an inpulse from the action of eoughing, for it is isolated rom the abdominal clrmber at the internal inguinal ring. A hernia renders the serotum opaqne thronghout, and owing to the viscus being ransmitted throngla the inguinal ring, an impulse in it is always elearly wrecpuible. 5th. Hydrocele of the sprimatic cord might cause a tumour, isiug from the serotum through the inguinal eanal, aud, as regards firm, would therely simulate a hernia descending through this eourse. In the former, as in the latter, an impulse would le felt from the action of coughing, and the wore clearly and equally strong if the hydrocele, from a congenital delect ol closure of the internal ring, communicated with the abdominal peritonaal membrane. Moreover, in sueh a state, hoth would at times be cap:ille alike of reduction into the ahdomen. There attenl, however, a liydrocele, wherever situated, a tension and listicity which are not of the same marked Ilegree attending a hernia; but when the $\mathrm{p}_{\text {hances }}$-sical signs fail to distinguish them from cach other, the constitutional signs serve this purpose, especially those which indieate visceral obstruction. 6th. A hernia and a hydrocele co-evisting would mingle those signs which respectively characterise each when happening ulouc, and the more completely so if the hernia were serotal. But if the hernia were a luhonocele and the hydrocele confined to the tumica vugualis, their distinctive elaracters could he ascertained at the place which each accupics, for there would exist an interval between them at which the cord could be felt ol' its natural size. When a hydrocele exists alone it must be formed in the tunica vaginalis or in the serous spronatic tube by which that sac originally conmunicated with the aledominal serous membrane. But the tuniet vaginalis may be of its nomal chnmeter and size as an envelope for the testicle, while, at the same time, a hydroccle may be formed in the sae of a scrotal hernia, and sin grently incrense the distension of the scrotun beyond what this part would pressnt if ocenpied alone by the bowel, that it would give the appearutee of a hydrocele of the tumica raginalis. In this case the lowel would be immersed in the fluid of its sae, while below the sae the twstiche could be distinetly felt, as in serotal hernin, which would not he the cate with thut organ if the liydrocele were in its serous envelopes, or if the hernitu were congenital. 7 th. Congenital hernia and congenitul hydrocte may co-exist, and render it impossihle to distinguish hetween the two contents of the tuluour by any outward anatomical feature, for their inward natomieal boundaries are the same in form and kind Sth. Varitocel; in whiels the spermatic ycins are much distended and convoluted, may be mistaken for a herniu of the oblique kind; but more frepuratly, perlhaps, it is the hemia which is mistaken for the varieocele. A hernin of the omentum is that whiel most resembles a varicocele; and more thun once J have seen the former (ere its nature was judged aright) ulrout to be made the sulject of the operation suitahle only for the latter. The oneathm is of that structure which, while it may, with ordinary powers of contpurison, be hnown by the touch from a heriary bowel caunot so cusily lee distinguished by that sense from enlarged spermatic veins. The onentum, consistivg of thin layers of serous memhrane, reliculated by fatty substance, may descend the inguinal canal and the shenths of the cord in such a form and quantity as to distend those purte to no grater caliber than they would pressut when affected by raticoccle; the tumour iu looth cases is uniformly cylindrical, rud the blice of the oneutum nire expable of being rolled on each other between the fingers, like the distonded veins. The inelastic feel wheh characrerises omentuu is not ulways appreciable, by reason of the presence of
a small quatity oit scrous Cluid, which makes the part the more closely
imitate vascular distension; and hesides this, there is, in both cases, the impulse of the abdonen almost equally pereeptille, and, in the erect posture, the two similarly gravitate. In contrast with these similar states of the two we have to judge of their difference in the eflect of the reeumbent posture on each : the hernia, if unurged by the hand, retains its original volume in this posture, while the spermatic vessels now unlond thenselyes, and will resume their varicose distended state when again the patient stands ereet, even though the inguinal ring be stopped hy pressure. 9th. A hernia, uneomplicated with any other abnommal condition, may exist, and yet be so masked by the superficial parts, that its presence can only be ascertained by the constitutional symptoms of its strangulation. This occurs when only a sinall portion, or lalf the eircumferenee of the bowel, is nipped hy the strieture, and thus may eseape notice, even when the parts are exposed in an operation.

The scat of stricture in each variety of inguinal hernia must, necessarily, vary according to the situation of the part tbrough which the howel protrudes. As the inguinal wall consists of many layers of structures which do not, for the transmissiou of the bowel, yield in all instances, the one opposite the other, so as to enuse a corresponding liatus in them directly passable from the ahdomen, we have, therefore, to look for the constricting structure in various places in respect to even the one known variety of heruia. And as those several layers of structures vary as to kind, not only in different situations, hut also in the same, so we have to consider the kind of constriction, whether as eaused by membranous, muscular; or fihrons suhstance. When the bowel gaius access to the inguinal eanal, the parts whicb form the internal ring are stretched by the viscus; and this implies that those parts are subjected to an amount of violence, more or less, which will account for the tenderness in this situation. Though we describe the internal ring as the entranee of a funnel-sbaped tube, produced through the ingminal eanal from the fascia transversalis, this is not correct as to the natural form of the parts, for, in truth, neither the mouth nor the bore of that tube exists as a space unocoupied. From the point where those vessels enter the tuhe at the internal ring, which the peritoneum closes, to the point where they leave it to ramify in the testis, they are imbedded in cellular substanee, which fills the interstices between them and the tube which encloses them; so that, when any additional organ-the howel or omentumtraverses the interior of the tube, it must not only rupture the cellular tissue by dilating the tube from the vessels, but in its progress plough, as it were, that tissue before it. The form of the internal ring is neither circular nor oval, in the natural state; neither is the form of the tube cylindrical in that state. That which we name the ring is a mere valvular slit, sufficient to allow the passage of the spermatic vessels into that tube, whose sides (while in the inguinal canal) are rather flatteued against each other and the intervening vessels. When, therefore, we consider this form of the parts which are to transmit so hulky an extraneous organ as the bowel, it must be evident that that oecurrence is attended as well with rupture of tissue as with dilatation of it, whether the hernia be of sudden or of slow formation; and that, if sudden, the parts are in all instances more likely to give way hy rupture. Assuming this to be the ease at the iuternal ring, when suddenly forced by the bowel, the extent of the rupture will of course be in proportion to that part of the organ which eaters the canal through it; and to a corresponding eatent, also, will the spermatic tube he dilated in the progress of the organ downwards. The bowel being now in the inguinal camal, whether by rupture or by dilatation of the parts, we have the neck of its sac in the span of the fibres of the internal oblique and transrerse museles, and in the same relation to these as the upper end of the spematic tuhe originally was. The external oblique liernia, therefore, whether or not it be affeeted with a passive constriction hy the membranes surrounding its neek at the internal ring, may he considered as liable at all times to an active constriction by those muscles, the lower fibres of which, arising from Poupart's liganent externally, and becoming inserted into the conjoined tendon, to the iuner side ol; and belind the hernia, can thus act upon its neck as a "sphincter" (Sir Astley Cooper). It is only the bernin which enters the canal by tbe internal ring, which, from being surrounded hy muscular filires, ean he affected with active constriction. From the internal ring to the serotum, this hernia is, like the spermatie cord, invested by the cremnsteric fibres; hut these cannot act npon it in the same manner as they do upon the testicle. The nest part which offers an impedinent to the progress of the oblique hernia, and which, when it is passed, hecomes the seat of constriction, is the external ting. The parts in which this opening is formed, being of fibrous structure, the degrec of constriction which they eause to the hernia must always be of the passive kind. The dilatability of the external rin! is altogether dependent upon the state of the inter-colummur fascia,

the fibres of wbich bind together those whieh form the pillars. The intercolumnar fnsein varies in strength in different individuals. When it is weak, the hernia may dilate the extermal ring to such a wide area ns to seem but little resisted in this place; but generally the fibres of the fiscia are of such strength as to gird the hernia so tightly that it is inmovable in their cmbrace. In the latter eondition, the hernia must be sulyjected to mueh eonstriction ly the external ring; and I have little donbt, that if all experiences were canvassel, as to whether the more usual seat of the principal constrietion was the external or the internal ring, in respect to the hernia which traverses both, the former would lave that verdiet in nine eases out of ten. In all the instances of external ingumal hermia whieh I have had an opportunity of examining, there appeared, on extricating the bowel, in deceper and more permanent depression made in it where it corresponded to the external ring, than in any other situation, for it is there that the parts are nost resistant, and it is there that the herniary bowel takes its second bend, which completes its obstruction.
In the case of internal or direct inguinal hermia, the stricture is of the passive kind; for the strnctures through which this hernin passes are all of fibrous tissue, or liscia. The escape of the bowel through the external ring is so immediate after the rupture or the ddatation of the structures which fenee tbis opening belind, that the seat of constriction is always at the same place. The peritomeum, transversalis fuscin, and conjoined tendon, being successively applied to ench other and against the external ring, the four parts, in the sime order, will be found to gird, as one and the same structure, the neck of the sae. Upon the existing state of the eonjoined tendon depends in how much the external ring is to be regarded as the seat of stricture nlone. If the tendon be so strong as not to be dilnted by a hernia, and yet to allow of the passage of this by a separation between its fibres, then the elelt in the tendon will efteet the constriction of the neck of the sac ay much as, if not more than, the extermal ring. If the heruia escape aside of the outer border of the tendon, and has to bend inwards in order to pass the external ring, then it will be constricted between the opposite margins of the two. But if the tendon, where it should fence the ting, is weak and membranous, or absent and that the peritomenm and transversalis fascia alone oppose the passnge of the bowel throngh the ring, then this will, of course, be the only seat of stricture. Indeed, in the majority of instanees, the extermal ring is the part which does primeipally eonstrict this hernin, also; for the very faet of this furming at all in this situation is owing to the wenkness or absence of the conjoined tendon behind the ring. When the internal hernia is oblique, by having entered the inguinal comal, it is then, like the external oblique hernia, surromded by the muscular fibres which gird the internal ring, and may be accounted as equally liable to active constriction lyy the spasm of those filres. But perlaps this kind ol' constriction is much more often inferred from the anatomical condition than realised by pathological experience.

In both varieties of inguinal hermin, the neek of the sac is described as being oceasionally the seat of stricture; nud it certninly is so; but never from a cause originating in itself, or independently of the more superficial struetures. For, supposing the sac to be formed of the peritoneum by dilatation, it is evident, that it other structures permitted, it would adapt itself to the form and volume of the protruding viscus at all situations; and the same may be said of the lisciat transversalis and other membranous tissues. The form of the sac must, therefore, be mfluenced by the disposition of the parts which surround it; and from this circumstance it may be taken for granted, that the form of the viscus wheh protrudes in the sae will be, is it were, a cast of this envelope, and of the structures which inelude hoth. The neek of the sac of an oblique hemia is marowed at the internal ring when this ring is itself narrow; but, more frequently than otherwise, the internal ring is (as far us my observation informs me) of sufficiently wide an area
not to suljeet the hernia to any very inconvenient degree of constriction, for the pmets whielh sunn it here are of a kind more readily dilntable than elsewhere. In the ingninal cumal, the volume of the horect in its sne is limited to the dimensions of tlis pluce, which, by the resistunce of the inguinal aponcmosis, cannot be dhited to any marked degree bejond what it ordinarily preents. Agrain, at the externul ring the sae becmones deeply indented, and, consequently, iss cuntents constrictes), when that opening is narrow, und not of a nuture to yicld. In like manner, the area of the neek of the sac of : direet ineuntal liernia is limited on thut of the outlet through which it passes: and hence it is chmer, that if the outlet did not eonstrict, the neek of a hemial sae roull not exist of tho form in which we generally find it. -111 this is so obvions as not to require mention if it did not lead to practical inferences. In recently, formed hernix, the liberation of the $1^{\text {nists }}$ which constrict will give freedom to the neck of the sace as well as to the lowel in it. But when the neck of the sac has existed in the embrace of the constrictiog purts for a considemble perionl, whem, as a consequener of rupturing dilhta tion, it has sufficred inflammation and undergone chrouric thickerning, then, even though the suriounding parts he divinled for cheir relaxation the neck of the suc, being callous, as a ricatrir, will maintuin its narrow diameter, and still of itself constriet the buwel in it. In such ense, it is required to incise the neck of the sac, anl not only this, hut any other prot of it which, from haviug been subjected to the like coul striction, is necessurily affected in the sume wny: When the external ing bas long been the canse of stricture, the sac here will be even more likely to present the condition now described than at the intermal ring. Besides this requirement for opening the sac, others are recomisel the bowel, as a consequence of influmaztion induced by constriction may be adherent to the meck of the sac, or'to any other part of its interior; or firm louds of false membrane, stretching from side to side of the sale, may constriet the bowel in it; or this effecet may be caused by the bowel being herniury, through a rent in the onentum within the sac; or there may be a serics of indurated vulvular riurs, narrowing the sue at intervals and tightly enbraciug the contained bowel-such a condition being the supposed effect of successive protrusions of the san from the place (inturnal or external ring) where, by constriction, evich ralve was formed. Examples of this mature are of such striking significance; as to recommend the apening of the sac in all instances, so ans to exmmine the condition of the bowel. In some of thone conditions, the bowel cannot be replaced unless the sae be opened; in others it may be. while. at the same time, its state is such, that the operation firs obviatily its strangulation would be unproductive of that effect. These are tangible, urgent reasons for exposing the bowel in the operation for hemius, anul admitted to be such by those who suppose the dnnger necruing from that measure, and do not those reasons hesprak its necessity in ali cases, fornsmmel as they camot be known not to exist so long as the sac is entire? But what is the structural peculimity of a hernial sac which shonld forbid in incision of it? What, physiologieully; unutomically, or pathologically, points to the olyjuction? What is the recogaised ill consequence assignable, particulnrly, to n wound of thant membrane, and what can that ill be if the membrane is but an adventi tious product? Is it peritoneal inflammation that we have to fenr as in prospect, while this already exists by reason of stranguluting visecral obstruction, which, in fact, has necessitated the operation? Whys refer the effect to a mythical canse while a real one is in riem?

Hasing now noticed, cliefly in reference to the cutting operation, the parts which constrict the hernia by the resistance they offer to it in its passuge through them, it remuins to be considered in what manner the bowel sirangulaks ilself against those parts. In the latter point of view, the lurnia will uppear as much the agent of its own coustriction as the subject constrieted, and this will clucidate the prineiple on which the taxis is to be conducted. Wben the heroin is passing throught any part of the groin, it must ndapt its size to the niva of the place trans

figures of plate XXXII.

Fig. 1.-Ablominal view of axtomal inguinal hienina become lifrect. - A, spinous procezs
 E E E, Peritonanm.-G, Neck of heerinary Eac lending epigustric artely to inuer side of

 8, Othurator nierve.

 N, Hinens ansede.

 3, Prowituda nitcry:

COMMENTARY ON PLATES SXIX. XXX. XXXI XXII. \& XAXII

mittine it, else it conld not pass throngli such place; and hence it is evident, Wat in theruin. when pnssed, retained the sane brlk as it had when pussing the parta through which it is passed could not then be regarded as a eamse its enostriction, for it conld be remmed as readily as it egressed. In mentul herniu, the part. below the internal or the externul iuguinal ring is of no greater dinneter than the part in the enbrace of either of those opeaings, and exemplifies this pemit. But in hernin of the bovel, the apposite of this condition is observalle. The bowel below the sent of stricture fir execels the diameter of that in it, ond is expanded as much as, if not more than, the part above it ; and as this oppenance is assmed by t be bowel sulhsequenty to the time when it was in passage through the ceirding parts, it must he regarded as due to the vital :ggeney of that organ in its unwonted position. While the bowel is passing through the narrow space the boundaries of which are to become the seat of strieture, the tiscons is compressed and connugated, so that, for the time, its contents are pressed ont of it intu its adjuining parts within the ablomen, and the circulation is imperled from having necess to it. The compressed bowel is then, in passage, of no more lmik than its actund structural quantity, und this is bint small. But when the borsel pasees beyond the aperture, it is no longer sulyjected to the same degree of compression, nud then resmues its ariginal form and size by the cireulation, as well ins the intestinul mater having now partina access to it through leave of the ring, which, by the transmission of it, has heen somewhat dilated. From this late the bowel effects its om strangulation. Tbe mesenteric arteries leing of a strueture more capalle of resisting pressure than the acempanying veins, and the force of the arterial current being greater than that of the venous, the incarcerated howel is still reached in some measure by the circuhtion of the arteries, while that of the veins is olstructed. This aecounts for the eougestion of the bowel-the colour of it being that of veuous blood, stagnant. Besides this canse ol tume. fuction of the bowel below the stricture, there is the slow aceumnlation of the more lluid part of the intestinal matter, cansed by the vermicular action of the bowels leetween tbe strieture and the duodenum; while the bowel between the stricture and the rectum may be regarded as non-contimnons with the upper portion of the intestinal canal, since the howed below the stricture is incapable of impelling its contents onvards. In evory complete hernia of the bowel, there mnst of course be two parts of its canal in the embrace of the stricture, and from this it will be inferred that the impedinent to the onward progress of the intestinal contents nust tell with donble effect in respect to the rectal side of the ennal. The inearecrated bowel, therefore, reeeiving some portion of the intestinal matter from the duodenal side of the bowel, while it transmits mone to the rectal side, must, from that cause, swell below the stricture manl secure its orm confincment. Ifs contents now undergoing chemical decomposition, gaseous natter is giren off und adds to the distension of the howel, rendering the hornia tympanitic; while the serous seeretion, sts well of the bowd as of the suc, also cnlarges tbe bulk of the hermia, and thins we have it provel to us that, wbile the name " stricture" applies to the parts cmbracing the heruin, stranuutation is due to the bowel itself.

The lazis, as a ineasure for replacing the inguinal hemin, is to be conducted according to the anatomieal relutions of the parts concerned in that necident. But while the anatomical principle is necessary to be (1)served at sall times, there are ofler calculations no less requisite to be made, in oriler to render that principle ceftective. It is not all-sinficient fin the reluction of the hernia to know in which direction to urge its replacencut, il its state be such as will not admit of this, eren though there be uo other obstacle than that offered by the parts thrming the herniary aperture. While the seat of constriction is that which is to be wercome by the cutting oprention, the position and form ol the bowel demand eren more consideration in the performance of the taxis than the constricting pirit itself, for, in fact, this part is only to be commanded, as it werc, by the instrumentality of the bowel; and if this rule were more often mal skilfully observed than it is, I doubt not that far more frequently than we now see the taxis fail, we should find it prove that the hernius has as little needed the surgeon's bistonry as the physician's recipe. Regnoding the subject in strait with in riew to its reduction by the tuxis, we have the hemiury purt below the stricture in a state in which it could mot huve possilly ruached that position, for it is now of far grenter dinemsions than the $1^{\text {mart }}$ gint by the strictare or than the mea of the space, whith was only just sufficient to transmit it when of much smaller size. To return that henius contire as it. now appears throngh that space, while looth retain their respective proportions, must therefore he acknowledgel as physically impracticable, and hureupon rise the follorving indientions: wither the stricture nust be oyereome by an aperative incesion or the bowel namst be reduced in size by manipulation-
by the taxis. Now the latter result, it must be evident, ean only he attained by compression effecting a diminution of the quantity of the hernial contente, nad this should always be the first ohject in vicw while performing the taxis, for mutil that be nccomplished it will be of no avail to direct the hermia retrograde throngh the course it has protruded; for though it feels elastie and impressible, yet the strieture will no more rendily allow the protruding viseus to repass than if it were a solid ol the snme girth. So true is this proposition, that I do not hesitnte to say that, in every hernia replaeed by the taxis, that event has been promoted not so much by the anatomical skill of the mamipulator as by the simple physieal effect of a reduction in volume of the hernia by the eompression of the hand. It being self-evident, then, that the greater eannot be reduced througb the lesser, we have, in order to effect the reduction, to equalize the periphery of the hernia and the arca of the aperture trans. mitting it; and as the taxis preecles the operation, let us consider the means whieb are in common pratice for aiding manipulation in the former mensure. If the sent of stricture he, as it generally is, in the unyielding fibrous tissue of the inguinal parietes, I would ask of what avnil can any uedieine he, whatever be its modus operandi? for purgatives eannot reach the inearecrated bowel, and sedatives and nauscants cannot affeet that tissne whose organization is such as to render it ineapable of active motion on its own part, and hence equally ineapable of passive relaxation. Of what avail ean venuesection be to tbe reduetion of a hernia under those eireumstances, when it oan neither relax or miden the area of the apparently bloodless filzous stricture, nor ahstract hlood from the vessels of the bowel whase eirculation is mechnnically ohstrueted? Agaiu, how can the warm-bath be supposed to effeet the relaxation of a fibrons stricture? or supposing this possihle, of what avail would such relaxation he while hent, at the same time, promotes the expansion of the strangulated bowel itself and of all its contents, whether gaseous, fluid or solid? Again, while the hernia is in the tight cmbreee of the stricture, what enema pipe, of whatever length it he, even though it were to traverse the rectum, the colon, and the ilium, to the inguinal rings, can relieve the strictured howel of its contents? These are questions so hound up in the nature of things and so suggestive of the cmpiricism of such treatment, that if our "practical" mnu, laying lis right hand on the herniary hody, showed me its roluction while opiate, bath, or purgative was in operation, I would more willingly ascribe the result to miracle than as the effect of either of such menns. But in the applieation of cold as a contractor of bulk, and iu the use of compression as a means of diminishing quantity, there is a rationale nt once as feasihle as $i t$ is always promising. Acting, then, in concert with the simple physical principle, the anatomical one will the more likcly beeome productive of the end in view. Tbe recumhent posture allows the abdominal visccra to gravitate towards the back, and gives the herniary bowel a tendency in the same direetion, not so much by reason of the weight of the viscus outside the seat of stricture as by the weight of that within the aldomen, which, according to the force of its gravitation, makes traction on the herniary part. 'This tendency of the hemuia to follow the viscera, gravitating en masse, will be furthered by raising the pelvis to a higher level than the abdomen and thorax, while the relaxation of the inguinal parietes will be as effectually aecomplisled in that position as if the shoulders were raised. By flexing the thigh to the groin, by emptying the bladder, and rendering the diapliragm inactive, a further degree of relaxation of the groin will he efficted. ln the trial now to be made for replacing the howel we have to consider the fact that the hernin helow the stricturing ring is of greater dimensions tban will allow of its being redueed through this strait. To lessen the herniary quantity is now the immediate object, and this can only he attaliued by applying to its whole superficial convexity the concave recipient paim, and urging it with a gentle, gradual, equable pressure, so as to empty the sac of its fluid and the bowvel of its flatus or other contents, through the still pervious portion of the intestinal camal within the strieture. This being done, the reduction of the protruded bowel will be fonnd to be more promoted by the traction of the abdominal viscera gravitating in the position in whieh the hody is placed than by any effort of impulsion by the hand of the operator. I have in all cases experienced this fact myself. This traction from without inwards rather than eompression in that direction will also better answer the necessity of replacing first the part. of the bowel which last protroded. Rude compression, while it cannot eontribute to the safe and proper reduction of the bowel, is apt to causc intns-susception; or the equally undesirable result-the "reduction en bloc," sac and all; or to bruise or burst the howel ayainst the sharp resisting margin of the fibrous stricture; or to force it into extra-ablominal situations, where, concenled, of course uothing nore can have been uffected than a change of place. Indeed, judging from the actual state of the hernin'y howel or omentum, there is every

nss

Fig. 3.

kig 9.

gnod reason to doubt if any foree, grenter or less, or in whichever direction it he made, cas contribute (fint ther than by causing a dirninution of volume) very materially to the replacement of the bowel. For, supposing the bernia relaxed and decreased in volume hy compression, no impulsion then on its periphery can unseat its strietured neek any more than can impulsion at one end of a flaccid cord put in motion the other. In either case, it is the part only which is next the acting power that will obey that motion. But it is different with the foree of traction on a flnceid nass; for as one part obeys this motion, so must all, fiom the same canse; and therefore I conceive that the reduction of heruia is rather to be attributed to the traction of the viscera gravitating according to the supine position of the hody than to manual impulsion from hefore. Bc this opinion plausible or otherwise, it will, however, be evident that, if iupulsion can be of any avail at all, the direction in which the hernia protrudes must always determine the direction in which it is to be replaced. If it be the direct variety of inguinal hemia, pressure is to be mide from before backuards, and this will serve equally for the reduction of that hernia which, foom being originally oblique, has become direct. If it he the oblique variety, pressure is to be directed upwards, outhearde and backzards, in the course of the inguinal canal; but while the priacipal seat of stricture is generally the external uing, it may be very reasonably believed that the portion of the hernia hetween this openiug and the internal ring is as often not under the commaud of the hand.
The operation for liberating the hernin hy dividing the stricturing parts is to be undertaken when the tavis fails. From experience it is tanght that, when the bowel is in an actual state of strangulation, the less the operation is delayed the more hope is there for its successful issue. This indeed, will be readily suggested by the state of the hernia and of the
patient. The manipulation by the taxis camnot he borne in such extremity, because of the tenderecss of the parts; and, owing the the lowel being on the verge of disorgnization it requires but little pressurt to rupture it. When the general and local symptomis of strampulation appear the howed may be considered so totally ubstrneted, that the taxis, however prudently perfurued, camat proluce a diminution of the bulk of the hernia, and therefire it may he at noce concluped that its redsetion by that mole is impossille. The cheration fur the division of the stricture in eaterzal inguinal hernia is to the conducted in the following way:-An incision is to he inade through the intemment, adipuse tissue, and supericial fascia, of a length and depth sufficient to expose the teudon of the external oblique tumsele for an inch or so alave the middle of Poupart's liganent, nind the hemia fur the same extent behw the external ring, The lengeth of the incisim will require tuloe varied aecording to circumstances, but ordinarily it need not be greater than sufficient to expose the constricting parts: its direction should ho obllique. with that of the hemia, and also along the middle of it: longindinal :xis, The depth of the incision will be greater or less necorling to the quantity of adipose substance existing. The only ressels which cross the line nf incision now indicnted are the hypognstric vein and a small artery-a hranch of the superficial pudic. The spermatic ressels being behind this hernia, are ont of danger. With the inguimal aponeurosis mow in view, it can be ascertuined in how far the hernia is constricted hy the external ring. But whether or not this be the principal seat of stricture, the parts forming it will have to le divided. That the external rime in all cases, canses more or less constriction will appear from the suldan dilatation of the hernial saceserping fromits embrace. After depressing the hernia, from the extermal ring, this latter is now to be divided in a

FIGURES OF PLATE EXXIII.

Demonstrations of the Origin and Progress of Inguinal Hernias and of the Opcration.

Fig. 1.- When the peritoneuru (from congeuital defpet) dees not close the internal ring
 F F, witlin the infnodibuliformo frocik, D G , then the bowel many at any time enter that tubo without, of conrso, cither rupturing or pouching the inguinal periteaminn. The previsely the same form of a hervial sac, is when this has been protrudel by the bovel,

 Both are external to tho epiphastric anery, in the one casc, us the serouss sec in the other:
the spermatio vesels, 4 . The serous tulte in

 internal whethger the esteraul ioguinnl liernia be congenital or uot, the oprestion is to be con-
 ducted in tho same wny in reference th the ccus of cons as in figy 1, except thut tho servus
Fig. 2.-Representing tho sunco condition of pars
 aplermantic proctas, ine the infundibuliform fissin, D D F , zany in tho same uannere as ig. is a nere hamcort
receivo a herniary bowel, and become the saco of this organ. Δs the tilue in this case is perrious in the inguinul canal, D E D A°, and inper ions becow the extomene originally
 poucbed ly the bovel from the closed interanl riug, Tor both wound he or the sinus for ondiBnt this crocumstance can he
mury extenal inguinul herriin.

Fig. 3.-When the peritoneran, E , cloess the internal ring, $\mathrm{D} D$, whale below the closure the serons spermastio tube, F F, renains pervious, theu, in erler that an exteruan ing sinan the hernia miny occur by dintation, tho bewel must formins sac from the periz, tho hermiary eno
 and the serous spermantic tube; thio formor cither enclosed in the either side of it. Investing tho bevel, therefore, there will nppesr tho chicf pratieal iurBut whatever be the anatomical rariety in this respect, the points of chich crivantric aul portance nre not sulject to such variation : the relutive position of wio be the sawe as sper rintic vessels, the seat of constriction, and
iu ordiany forms of external inguinal hernin
is ordiunyy forms of external ingninnl hemin. , D D, is elosed by tho peritomerm, E, Fig- 4.- When, as ordinarily, the internal ring, D D, is elosea hy tho perile enigistric and whon tho bevel dilintes this portion of the memirane on the onker raic of ine thigind tho
 inguinal canal, $D \mathrm{D} \Lambda^{\circ}$, and belowv this still culcesed in tho ind dilatating the inguinal fuscioh D G. However the sac is formed, whether by ho linating ether structures, tho
 sac desceuding fiom its original penition (wherve it appenss as a shumsions of the pline which eurved planess, ns indicantod, nessumes tho form, 1 position, and dianemsions ef the pince which bounds it in its passage. Within the inguinal cunan it is ouly of how gaties censtriction, and is surported by its pariotes. If, whilo iu this place, he hong aromill which the bowel
 donbles; hut the eqiggustric artery, 2 , being hero situatal, forbiluthe invers, from tho extermul and then it becomes uecessary to olit the inguiaul caual on its cuter wile fins pusseit the exto tho internal ring, in order to likerate the hown. Whiue till it roulhes the lesticle it
 uwells moro ned move, nccording to the degrew of its descime, its athenc. The hernia, now
 gravitatiug from the iuner berver of the intwral ring earriet the obliquity of the canal,

 As the hernin now projects from belinud dircety forrands, nol the mpiposito borlur of the
exteranal rlug. Under thoss cirounstaneses it is obrious thent, in an opention, the Lacisist

 inguinnl cunal, D D A^{*}, und willia the infinaditaliforna birous cathe D D G, it imitatess
 of both organes arises only frona the mumer in wiùs thuy hecome rappectively colynul hy

 on all silles.

 internal ring closed, there will exist still an ompty hernial sne, \mathbf{F}, in the img ginal suinl os
 as at first, this second stac, H, will he receivel by inversins into the one ursaly uxhs rivg; and thus two sass, with distinet interioss, will invest the boorel. A ser ins of sach wet whe

 iusguiual
tusticlo.
tusticlo.
Pig. 7.-Tho mpignstric rescols, a, hecing belind the iuguizul tiscia transsemsalix, wiu lonil
 membmae. Tho herriury bowel many thervere inguul connl, iu which it will lie oiligqur
 mind in
hecouce investenl by the samo structures, uot excepliting the erominster muxcle 'The inter.

 the exteruel mariuty. Wheu uither beconeen to fe fumbl behind the so mull the hesticle
 below it. Tho interzul herrain enterzs duc the these will then be on its onter side. But umbilital cord is chose.
when the cord, 3, fig. , is apart frem the artery, 2 , the Leemin then enterse the cagni when the cord, 3 , fig-7, it nurnt of the conjininad toudou, 33 , be werke, the huruia, mang

bund it forwards, anil will wieh enters the inguinal canal, nLethir internully or externully.
Fig, 9.-The lernia, whil

 the sac, miow leopl of the mublidicus
direction outwarls and upwnrds, flrough the intercolmmar fibres which are the chief canse of the constriction, as they deternine the area and form of the ring. The border of the ring laving been divided on a director, this instrument is to he passed under the apoueurosis in the direction of the inguinal canal; and, taking care that other structures are not included, the aponeurosis is to be slit on the directori This being done, the sac, if not thickened and permanently contracted from the constriction of the external ring. will now expmat ahove it in the imruinal eanal, and, the internal ring now permitting, the reduction of the bowel may be effected. If the sac were still contracted into a neek it the situation of the external ring nfter this was divided, then it would he nucessary to open the sachere in order to free the contained bowel. When, after dividing the filres of the external ring and the aponeurosis, the reduction of the leermia camnot be effected, then the intermal ring or the parts surrounding it cunse the difficulty. If the lower borders of the inturmal ollique aul transverse muscles feel tense around the internal ing, a few of their fibres are to be divided on a director inserted between them nad the nerek of the sac, anil in doing so the epigastric artery will not ne exposed to iupiny if the incision be made upuards and outheards, for that resel being on the inner sile of the intemal ring, will be separated from the histomry by the wilth of the neek of the hemia. When, after the division of the misenlar fibres, the hernia still presents a difficulty to reduction, then the canse of this must he ascribed to the neek of the sac in the emlance of the internal ring ${ }_{1}$ and in this case the sac is to be "pened, if it have not been so already. The immediate cruse of the constriction will now appeur, either as a thickened indurated state of the sae in the girth of the internal ring or else the bowel is adherent to the wech of the sac or to its body or its fundus, thens rendering it inpossible to reduce the bowel unless accompanied hy the sac itself. If the stricture be erused lyy the neek of the sac, it of course requires to be divided, and this may be done with suffety to the epigastrie artery if the incision be mande in the direction alrendy named. Adhesions, wherever existing between the bowel and sac, mnst be severed, if this can be done without inimery to the bowel; if not, the sac and bowel are to be reduced together, provided the latter has not the contimuity of its canal interrupted, or that the inurdiunte size of the protrusion does not permit.
The incision through the superficial coverings of an intirnal inguinal hernia requires to he mide at a different situation nod in a different direction to that for the extermal form of hernia; and owing chiefly to the situation of the sprematic vessele, and the seat of stricture. For the dircet hernia, protruding at once from behind, forwards, tbrough the external ring, the incision shonld be made vertically along its middle firr an inch or so above and below the ring. The skin, adipose tissue
and superficial fascia being divided and parted aside, the sac will upear alruptly swelling from the cxternal ring, and clearly indicating that this is a cause of constriction. The fibres of the ring are now to lave a director passed under them, and to be divided on that instrument in a direction uphoards and inwards. When this is done, if the neck of the bermia appears still constricted by the deeper fibrous tissues bebind the ring, they are to be divided in the same manuer and direction, with a view to avoid the epigastric artery, and then the bowel is to be reduced by manipulating the sac, supposing this to be unopened. The same circumstances, however, which necessitate the opening the sac of an external hernin, as often require this measure for the internal. In the operation for either form of inguinal hernia, the directions of the first and last incisions, ns above mentioned, will be fouud the safest, supposing their anatomical distinetion, according to the position of the epigastric artery and spermatic vessels, be elcarly ascertainable. But, as we bave seen thant the positions, ollique and direct, do not always indicate that the epigastric is internal to the bernia of the former character ${ }_{1}$ or external to the bernin of the latter, - for a hernia may enter the inguinal canal on the inner side of the artery, and be oblique, while a hernia originally external to that vessel, and oblique, may, by gravitating inwards, become direct, having still the artery on its inner side; and sinec, moreover, ceen if this change of character did not happen in fact, yet the ustial deformity of the inguinal parts is enough to render the dingnosis uncertnin; it is, therefore, recommended to incise the stricture in either hernia in a line dirvetly upwards (Sir Astley Cooper). It will be evident, however, that as the epigastric artery, wbatever relation it has to either the oblique or the direct hemia, always inclines towards the median Iine, so, if the last incision-that through the stricture of the neck of the hernia-be carried obliquely upwards in the direction of the nmbilicns, it would be much more likely to avoid the vessel throngh all its varying positions in respect to the neek of the hernial sac.
In this description of the operation for inguinal lernia, it may seem that too little regard was had to the superposition of the several layers of structures as investments of the bowel; but this is in accordance witb the small regard in which they are held in the actual operation, and very reasonably 80_{1} for, with the exception of the sac itself, there is no necessity for distinguishing between them. Anatomically, their distinction is recomizable, and teaches us the structural condition of the parts in respect to the groin as it is, and the manuer in which it is affected by the hermia; but practically their distinction is of no account. In speaking of the sac, the surgeon makes no distinction even between the fiscia propria and the serous membrane, for the two, adherent and inseparable, are to him as one in tbe operation.

Nomp-Lu the ubore ilescription of tho sampical arnatomy of the groin, it has hoon a prinfipul ohject with tao to livest the fiects, na nuch as prossible, of the obsouring clowl of nomenelnthre which surromila them, ns ileserithel in the leetureromom mull in books, anl which still obsourss then (su deeply ure the nureflecting impressel with, wames), even when those fucto an haviled in the lissemting twom. On meferniug to the works of Bir Asthey Cooper,
 tiactivenss butween what is called the "jetcreolumnur foscin" und the " oxtermal spernatic fascis," na if these werc structmes uaturally sepmable from ench other, or from the nponemrotic cembina if the caternuak blique masele. In these and other works, there is a lohourel aceomut of the superficind fascion as luing divieible into two layers; sherempran a cousideralde distirenue of opumion lias arisen as tat wether or wut we should regard the deeper layer ns bocing in joverluction of the fisecia latis, issending from the thigh to the abdomen, or rather of that on the ahbomen descending to the thigh. Of the sume trifing signigeance, whatleer surgizal or anotamical, niml fommed on an origial crror is a too limited view, uny bo regariled the substanec of that contraticty of ofinion which prevails as to tho true relution which the speranutis orril in the ingaium canal (and ronsequently the extersul inguital hernia) bears to the "lower margina" of the intermal oblique, and trunsverso wistles, aml to the eromister, Alhimms, Indler, Cumper, Bispia, nnil Chaquet, recoril triows, from which it may lue gatheretl that tho transversalis and oblipne waseleg ase penctrated ly the corsl, anil thint this limposition of the parts is (with some exceptions)
 Cayper hiserilusa the "lower elgen of the transoralis as enrved all mond the isternal ring, and auljncent part of the curd. Now, whilst thoso stantements are mandy terne to moture, mud yot would arpuar to lead to difereut conclusions felse whe equilly true to one mother?), the quatonieal paint might remniu for orer unsettled, dill wo wot, with tho
 purticulass, mul fuse them into the one compreliensive alea which Cloquat has adopted -

 elougates their tilens heferpe it. In this riew we nt ence correct the false ilea of a " ami murgin- of eubler the transsme or oblique muselo; and with good reston we a "lower credit that the cord an emeirmblel with theic tibres, which constitute a cremastar. In like credit ley it too puinatalking deeription, hues the simple jden of a tubulur production of the foscoin

 na firmal butweon them, as if this ring were min aperture, mhen it is ouly the orifice of a
 (which port, in fadt, is onty a ennal ing bef fir us the spermintic tube readers it so) it is tho

cellninr films conaecting the eremasterio fibres-with which the descripitive anntomist, in Lis play, beguiles his time.
In the samo spinit lans the disection of hernize been conducted, aud ouly to the same result. The coverings of a hernia vary as to number, from the layera of that purt of the groin through which it protrudes. This conld not oscur in the first stages of" a bernia, bowever likely it may bo to occar in the Intter stages, if the bowel alvays protruled in slow dogrees hy dilntation of its envelopes. But that sudden protrusion of the bowel must bo attended with rupturo of tho abdominul membranes, is a matter which, as 1 bave stated in tho text, cannot be denied on the score of renson; sall uron this only lave thoso of the fullest hospital oxperienco founded their opinions. Mr. Lawreuce ("Treatise on Ruphares"), nopertheless, remarks, "Whin wo consider the texture of the peritonewne, and the modo of its connexion to the whonn wo prrictes, we caunot fancy the posibility of tearing the connexion to tho abdonimal motion," WC cannot fancy lie possinily of tearing the menibrane by any attitude or motion." Chmplet and cenpa have niso expressed themselves to the efteet, that the perihowever, thut of Sir Astley Cooper is opposed. That great original authority, alludiug to the azternal variety of inguinal hernin-whieh, from the locality in which it occurs, is even nore likoly to proges by -states ("Lectures ou Surgery") "It is abilominal membranes than n heraia elsewher elongation of the pes ou surgery), It is generally thonght that the bernial sac is au
 termed " Weal grouth of parle to the hormary investment of tho fascia tradevornalis. must then, we know, he within hernia wheh descends through tho ingminal canal of tho fiscuia; but phon the the hamizbulform fibrons tuhe, which is a derivation pected that the but when the hernin is serotal aud rory large, it is senrcoly to be expected that the portion of the tube pendent from the external ring ean bo distinguisherl after distension and uttemantiou over so large a surface, of tho intermal hervin, whicla does not enter the inguinal caaal, Mr. Lawrenco (Op. Oit.) observes- "How often it way be invested liy n protinsiou of tho fascia tranaversabs, I cannot Litherto dotermine." Several shecimens of this hervia invested by the fuscin, have, howover, been prescoted to tho musemn of St, Bartholomew's Hospital, by Mr. Stanley. Hesselbach writes of the foscin as being always prescut. Cloquet mocntions it as being present always, except iu sueh cases as where, by being ruptured, the sae protrudes through it. Inngenbeek statey that the foscin is eonstantly protrosed as a covering to this hormia: "Quia hornia ingunulis itterru won in cinalis abolominalis aperturam internam transit, tunican vaginalems comumarni intraro nequit; parietem autem cmanlis abdominalis iuternum aponeureticura, in quo fivea ingninabis interva, et qui ex ailvorso anmionto abdominali est, nuto sc per anaulurn trubit." ("Comadent. nd Mlastr. Fermiarum, dec.") If an explanation of thase lifferences of panion be worth seeking for, it any be hal in the following wery just Irmark: "Calter enimansemper has partes extricat, quan involncro adeo inheront, at pro Luditu mwsuluxn (mombramum) efformare queas undo maganm illom inter anatomicos die erepantianu ortam" coujicio. ("Iconcs Herniarmi" Campor.)

Fie 2

Ris 7

Fige 8

He 3

Hig 9

DEMONSTRATIONS OF THE NATURE OF CONGENITAL AND INEANTILE INGUINAL HERNI AND OF HYDROCELE.

Fieure 1.-The descent of the testicle from the loins to the scrotum.The fcetal abdomen and scrotum form originally one general cavity, and are composed of parts which are strmeturally identical. The cutancous, fascinl l_{1} muscular ${ }_{1}$ and membranons layers of the abdominal parietes are continued into those of the scrotum. At the fifth month of feetal life the testicle, 3_{1} is situated in the loins beneath the lobulated kidney, 2. The testicle is then numbered amongst the abdominal viscera, and, bke these, it is developed external to the peritonaal memhrane, which forms an envelope for it. At the back and sides of the testicle, where the peritonæum is reflected from it_{1} a small membranous fold or mesertery (mesorehium 1_{1} Seiler) is formed, and between the layers of this the nerves and vessels enter the organ, the nerves being derived from the neighbouring sympathetic gangbin (aortic plexus) while the arteries and veins, springing respectively from the abdominal aorta and vena cava close to wbich the kidneys are situated, are correspondingly short. It being predetermined that the testiele ${ }_{1} 3_{1}$ shonld migrate from the loins, to the scrotum, 6 , at a period ineluded hetween the sixtb and niuth mouth, certain structural ehanges are at this time already effeeted for its sure and easy passage. At the time tbat the testis, 5_{1} is about to enter the iuternal inguinal ring (seventh or eighth month), a proeess or pouch of the peritoneal membrane (proeessus vaginalis) appears deseending from this aperture into the serotum, and the testicle follows it. The descent of the testis is effected by a very slow and gradual proeess of clrange. (Tout va par degrès dans la nature, et rien par sants.-Bonnet.) But how, or by what distinet and active structural agent, this desecnt is effected or whether there does exist, in fact, any such agent as that which anatomists name "gubernaculum testis," are questions which appear to me by no means settled." The general lining memlrane of the fortal abdomen is composed of two layers-an outer one (fascia transversalis) of fibrous, and an inner one (peritomeum) of serous structure. Of these two layers, the abdominal viscera form for themselves a double envelope. \dagger The testis in the loins has a eovering from both membranes, and is still found to be enclosed by both, even when it has descended to the serotum. The two corcrings of fibro-serous structure which surrounded the testis in the loins become respectively tbe tunica albuginea and tumien vaginalis when the gland ocenpies the scrotal cavity. The inguinal eanal of the female foetus lodges, as that of the tanle, a double invaginated tube of the fibrous and the serous abdominal membranes.
Figurs 2.-.The testicle in the scrotum.-When the testicle, 5_{1} deseends into the scrotnm, 6 , which happens in general at the time of birth, the abdomino-serotal fibro-serous membrane is still continuous at the internal riuga above the os pubis, 7. From this point downwards, to a level witb the upper border of the testicle, the canal of eommenication between the scrotal eavity and the abdomen becomes elongated and somewhat constricted. At this part the camal itself consists, like the abdominal membrnae. above and the scrotal inembrane below, of a fibrous and serous layer, the later enclosed within the former. The serous lining of this canal is destined to be obliterated, while the outer fibrous membrnue is designed to remain in its primitive condition. When the serous canal contracts and degenerates to the form of 0 simple cord, it
leaves the fibrous canal still continunus above with the fibrous menhrane (transversalis fascia) of the ahdomen ${ }_{1}$ and helow with the fibrous envelope (tunier alluginea) of the testis; and at the adult period, this fihrous canal is known as the internal speramstic sheath, or infundibuliform fascia, enclosing the remains of the serons canal, together with the spermatic vessels. By a simedar process the serous inguinal tube of the female feetus usunlly becomes obliterated within the fitrons tube as far up as the internal ring. When the serous tnbe remains pervious to adult age, it is known as the "eauol of Nuck, ${ }^{\nu}$ accompanying the merine ligament.
Figure 3.-The scrous tumica voginatis is separated from the pri-foncum.-When the testicle, G, has deseended to the scrotum, the serous tube or lining of the fibrons tube constituting the imguino-sperruntic canal, closes and degenerates into a simple cord $5_{1} 5$. "infantile sıwmatic cord ${ }^{\prime \prime}$) and therely the peritorupul sae hecomes distinet from its serotal part, which latter is now the serous tumical vaginalis. But the fibrous tube or outer envelope, remains still perrious, and continues in this condition throughont life. In the adult we recognise this fibrous tube as the "infundibuliform faseia" of the cord, or as torming the "fascia propria" of an external inguinal hernia. The anterior $\mathrm{p}^{\text {art }}$ of the fibrons spermatic tulre desends from the faseia transversalis; the posterior part is continuous with the fascia iliach, and all three parts with each other. In relation to the testicle, the poaterior part of the tube will be seen to be reflected over the hody of the gland as the tunica albuginea, while the anterior part blends with the cellular tissue of the fiont wall of the scrotum. The tunien vaginalis is now traceable as a distinct sac ${ }_{1}$ elosed on all sides, and refleeted from the fore part of the testicle, above and below to the posterior aspect of the front wall of the scrotum. This process of metamonplosis is peculiar to the laman species. \ddagger
Figure 4.-The abdomino-scrotal serous tube remains comtinuous amel open at the intervul ring, and a congoniud hydrocte is jormed.- When the serous spermatic tube remains pervions and continuous above with the peritonemm, 3_{1} and below with the tumiea rarinulis, the serons fluid of the abdomen will naturally gravitate to the most depernding part-riz., the tunien raginalis s_{i} and thus a congenital hydrocele is formed. This kind of hydrocele is named congenital, owing to the circumstance that the natural process of obliteration, hy which the peritonerum becomes separated from the tunica vaginalis, has been, from some canse, arrusted. $\$$ As long as the canal of communication betireen the tunien rugimlis nud the peritomeum remnins pervious, whiel it nay he throughout life, this lorm of hydrocele is, of consc, lialhe to oceur: It may he diagnosed from discased enlargements of the testicle e_{1} by its trausparency; its tlucthation, and its swootly uniforn1 fuluess and slape, besides its leing of less weight than a diseased testis of the same size wonld be. It may be distinguistical from the common form of hydrocele of the isolated tunica vagimalis by the finet that pressure made on the seratum will canse the tluid to pass frecly into the general carity of the peritomaum. As the fluid distends the tunien varinalis in front of the testis $s_{1} b_{1}$ this organ will of course lie towards the back of the scrotum, and therefore if it be found necessary to evacnate the fluid, the puncture may he made
*Dr. Carpenter (" Friuciples of Human Physiology") remarks, that, "the caiso of thii descent is not very elear. It cau searcely be due metrely, ng some have supposed, to the contruction of the gulvernaculum, siuce that docs not contain any burons strincture numin ufter the lowsing of the testis has commoneed" Dis Sharpey "Quanis Awutomy," The edition) ohnorves, that "the ofiles of the gubernacits will doabtless be regurded ns an The opinions of these two ditinguished piysemmo prosecated in references to this subject iuppurtind costimate of the results of tho researeches prosecated ia wefrencorg, Tieq dAzyr by Huller, Chmper, Hunter, Aruaul, Lobsteib, Mell, Webebr, Carus, Cloquet, Cerling, ned Brugnone, Tuniati, Sciler, Giturdi, Cooper, Betl, Wevor, Caw,
 as a guberniveulum exist, and therefore that the desconk or tho
auother causa Leaving thess maters, howerer, to tho cousideration of the physiologist it is sufficient for tho surgeon to know that the testis iu its transitiou derives outtain
coverim that a communieation is nlurcoby estathialled coverings frome the parictes of thengrin,

 fibrows, noother internal and send ifine fiscive aro parks (Seo "Lommeat. de P'eriton. of which the
Struetura" "de.) 1 Mr. Owen states truat
magiulis sa a distinet ma.
\& The eumns sperruutio tube romaine open in all quadrupeds; bnt their nawull prone

 sould sulfiect these to thi" frequent accident of hydrocelo or berviia, nature cullece tho serouas spernatio tute to erlose.

CONMENTART ON PLATE XXXIV.

with most sality in front of the scrotum. If ascites should form in an adult in whom the tunica raginalis still eommunientes with the perianal suc, the fluid which accumulates in the latter membrane will also disteml the fromer, and all the collected flnid may be eracuated by tapping the serotum. When a lyydrocele is found to be congenital, it must be at. once obvions that to inject irritating fluids into the tunica ragimalis (the radical cure) is iuadmissible. In an adult, fiee from all structural disense, and in whom a congenitnl hydrocele is occasioned by the gravitation of the ordinary scrous secretion al the peritonaum, a cure may be effected by cansing the ohliteration of the serons spermatic canal lyy the pressure of a trass. When a congenital ly drocele happens in un infant in whom the testicle, 3 , tig. l_{1} is nrrested in the inguinal canal,* if pressure be made on this pnssage with a view of causing its elosure, the testicle will be presented from descending.
Fiorme 5.- The serous apomatic canal closes inperfectly, so as to become succulated, and thus a hylrocele of the cord is furmed.-After the testicle, f, ha descended to the scrotum, the sides of the serous tube, or lining of the ingninal canal and cord may become ndherent at intervals, 3,8 , and the intervering sates of serons membrate continning to secrete their proper fluid, will necasion a hydrocele of the cord. This form of hydroecte will differ arcording to the rarieties in the manner of closure; nnd these 1mny- take place in the following modes:-1st, if the scrous tuhe rlose only at the interml ring, 3_{1}, while the lower part of it remains muiformly pervious, and communicating with the tumica vaginalis in front of the testicte, 6, a hydrocele will be formed of a corresponding slape; 2nd, if the tube close at the top of the testiele, 6 , thats isolating the tumica vaginalis, while the upper part remnins pervious, and the inter. bull hing open, and commemieating with the peritonenl sac, a hydrocele of the corl will happen distinct from the tumica raginalis; or this lntter naly be, nt the sume time, distended with fluid, if the disposition of the subject be favourable to the formation of dropsy; 3rd, the serous tube may close at the interinal ring, 3 , form sacculi nlong the cord, and cluse again at the top of the texticle, thus separating the tunica vaginalis from the mbdonen, and therehy several isolated hydroceles may be furmorl. If in this condition of the parts we puncture one of the sacs for the evacuation of its contents, the others, owing to their sepantion ${ }_{1}$ will remain distended. \dagger The female inguinal camul may become the sent of hydrocele if the crnal of Nock exists.

Figurn 6.-Myutrocle of the isolated temica vaginalis,- When the serous sperinatic nube, 3,3 , becomes oblitesited, according to the nornal rule, after the descent of the fresticle, the tmica vagialis in front of the testicle, $\mathrm{f}_{\text {, }}$ is then a distinct serons sac. If a hydroeele lorm in this sae, it may be distinguished from the congenital variety hy its remaining undiminished in lulk when the subjeet assumes the horizontal position, or when pressure is made on the tumonr, for its contents eannot now be furced inte the abdomen. The testicle, 6 , holds the same position in this as it does in the congenital hydrocele \ddagger The radical cure may be performed here withont eadangering the peritoman sae. Congenital hydrocelc; as it involres the spermatic eord as far upwards as the internul ling, is of a cylindrical shape; and this is mentioned as distinguishing it from isolated hydrucele of the tunica vaginalis, whieh is byrifiun; hut this mark will fid when the eord is at the same time distended, 1 at it may. be, is the latter form or the complaint, in which the separntion between the peritoncoum and tunica raginalis has been effected only at the internal ring.

Figure 7.-The serons sprmutic tuth remaining perxious, a congenital hemnin is fivmat? - When the testicle, G, lus descended to the serotum, if the conul of commenication hetween the peritoncum and the tunica vaginalis he motobliterated, afold of the intestine, $5,5^{\circ}$, will follow the testicle, and occtily the cavity of the thuica vagiualis. la this form of hernia (hernia tuniov रarinelis, (ooper), the intestine is in fiont of, and in imnediate contuct with, the resticle. The intestine, in this ease, may deseend lower than the testicle, anl envelupe this organ so completely as to reader its position very abscure to the tunch; but the spermatie vessels are ahwys belinel the herniary bowel. This form of hernia is named eon-
genital, since it oecnrs in the same condition of the parts as is found in genitnl, since it oecars in thene the internal inguinal ring remaining unclosed, and the scrons spermatic tube pervious throughout. It may oceur at any period of life, so long as the original eongenital defect remains. In the fermale the canal of Nuck recciving a bernia would render this truly congenital, hut the sac could not he distinguished from the ordinary one. It may be distinguished from hydrocele by its want of transpareney and fluctuation. The impulse wbich is communicated to the hand applied to the serotum of a person affected with scrotal hernia, when he is made to cough, is also felt in the case of congenital hydrocele. But in bydrocele of the separate tunica vagimulis, sueh impulse is not pereeived. Congenital hernia and liydrocele may eo-exist; and, in this case, the diagnostic signs which are proper to each, when occurring separately, will be so mingled as to render the precise nature of the ease olscure. A hermia may be truly congenital, and yet the howel may not have entered the tuniea vaginalis. T'hus, if the serons spermatie canal be obliterated only at the top of the testicle, the howel, which enters the open internal ring and deseends through the cord, cannot proeeed furtber than the point of obliteration. Congenital hernia must be of the external obligne varicty, because the open end of the serous spcrmatic tube is invariably external to the epigastrie artery.
Figure 8.-Infantile hemio.- When the serous spermatie tuhe hecomes mercly elosed, or obfiterated at the internal inguinal ring, 9 , the lower part of it is pervions, and communicating with the tunica vaginalis. In eonsequence of the closure of the tube at the internal ring, if a hernia now oceur, it camot enter the tunica vaginalis, and come into aetual contact with the testicle, 6 . The bowel, $5,5^{*}$, therefore, when alout to force the peritoneum, 8,8 , near the closed ring, 9 , takes a distinct sae or investment from this membrne. This hernial sae will vary as to its position in regard to the tunica vaginalis, aecording to the point whereat it dilates the peritoncum at the ring. The peculiarity of this hemia, as distinguished from the congenital form m_{1} is owing to the serotum containing two sacs, - the tamica vaginabs and the proper sae of the hernin; whereas ${ }_{1}$ in the congenital varicty, the tunica vaginalis itself hecomes the hernial sae by a direct reception of the naked intestine. If in infantile hernia a liydrocele should form in the tunicr vaginatis, the fluid will also distend the pervions serons spermatie tube, as far up as the closed internal ring, 9 , and will thus invest and ohscure the deseending hermary sac, $8,8,5$. This form of hernia is named "infantile" (Hcy) owing to the congenital defect in that process, whereby the scrous tube lining the cord is nomally obliterated. Such a form of hernia may ocenr at the adult age for the first tine, but it is still the eonsequence of original default.

Figure 9.-Oblique inguinal hernia in the adult.-This variety of hernia oceurs not in consequence of any eongenital defcet except inasumeh as the natural weakness of the inguinal wall opposite tbe internal ring may be attributed to that eause. The serous spermatie tube has been normally obliterated for its whole length between the internal ring and the tunica vaginalis; but the fibrous tube, or spermatie fascia is open at the internal ring, where it joins the transversalis fascia, and remains pervious as far down as the testicle. The intestine, $5,5^{*}$, forees and distends the upper end of the closed serous tube; and as this is now wholly olbiterated, the herminy sae, derived new from the inguinal peritonaum, enters the fibrous tube or sheath of the eord, and deseends it as far as the tunica waginalis around the testicle, 6 , but does not enter this sac, as it is already eloscd. When we compare this hernia a_{1} fig. 9_{1} with the infantde variety, fig. 8 , we find that they agree in so far as the intestinal sae is distinet from the tuniea vaginalis; whereas the difference between then is eaused by the fact of the serous cord remaining in part pervious in the iufantle hernit; and on comparing fig. 9 with the congenital variety, fig. 7 , we see that the intestine has aequired a new sae in the formel; whereas, in the intter, the intestine has entered the tuniea vaginalis. The variable position of the spermatie vessels and the testicle in figs. 7,8 , and 9 , is owing to the difference in the matomieal eireumstanees under whiel tbese herniw have happened.

 iltimain ingminul ring. Sonctimes ouly vic or the testes descends to the gerotums. Are we to

F When a hydrocele is intorposed between the ege anill atrong light, the teetis applcms os an opaque boily at the hack of the turica vagialis. But this 1 losition of the orgun is, from severol cansas, libblo to vary. The testis may lave becume morbingy adherme to the front wall of the surms sac, in which caso the lyydrocele will distend the sae laterzilly: Or the testis may to Eo transplosed in the scrotum, thint, whilst thue gland occopies its frout !urt, the distembed timien variunlis is turnal bethibl. The tunien
 effinsion, hecome sucoulitul-multilocmar, in which case, if a hydrocilo torm, the position of the tetis will viry aceorvingly.-See Sir Aetley Cooper's work, ""Anutany aunl Disenses of of the Thestis "") Morton's "Surgical Anatomy;" Mr. Curliufts " Treatise on Discasee of tho Tustis;" and also liw article "Testicle," (Cyclopt Anust it Physio.)

COMMENTARY ON PLATES XXXV. XXXVI. XXXVII. \& XXXVIII.

Femoral hernia. its anatomical varieties, their diagnosis. tie seat of strieture. the taxis THE OPERATION. UMBILICAL HERNIA, \&c

Twe femoral hemia originates, progresses, and takes its investments in the same manner as an inguinal hernia. The ordinary situation at which the femoral hernia arises, viz., the fenoral ("crural") ring, immediately on the inner side of the iline vein, where this vessel is about to pass to the thigh, is so close below and hetween the inguinal rings, that the same portion of the howel covers them, and would, under the same line of ahdominal pressure, if the three rings were equally passable, hecome herniary at the same time through the three. That this does not oecur more frequently than it does, and that there is a place of election for the howel to protrude at, must then he altogether due to a more com. pletely defensive character of the parts at one situation that at another: luat for this, the femoral hernia would he as common in the male as it is in the female, and the inguinal hernia as liable to happen in the female as in the male. The opposite to this statement is known to be the case, and the explanation of it is purely anatomical: the male in. guinal region is rendered somewhat less compact as to its parts, in giving transmission to the spermatic vessels, after the descent of the testicle, than the female inguinal region, which transmits only the uterine ligament ; and, moreover, the width of the female pelvis, measured from the symplysis pulis to the iliae spinous process, is greater than that of the male, and the parts which pass to the thigh, beneath Poupart's ligament, in the former sex, are less closely hound together, wherelog, especially the triangular interval, bounded by the vein ontside, by Poupart's ligament ahove, and by the horizontal ramus of the os pulis helow, is rendered of wider area than in the male, at the same time that it has only its ordinary defence, viz., the peritoneam and sulserons tissue, against intestinal protrusion. But this different disposition of the parts in the eorresponding regions of both sexes, which favours the oecurrence of femoral hernia more frequently in the female, and of inguiual hernia in the male, does not ahways obtain; and hence it is that the same variety of the disense may he induced in loth sexes, and at all nges, indiseriminately. If the texture of the structures forming the inguinal eanal of the female, be from any eause attemated, and the inguinal rings looser than natural, if the obliquily of the canal be not thirly established, or if, from congenital defect, the proecss of peritonæum (eanal of Nuck) which accompanies the uterine ligament remains pervious, and open at the internnl ring, where it will he continuons witb the peritonæum, then a hernia will sooner form in this situntion than at the femoral ring, if this latter he contraeted hy an unusually hroad insertion of Poupart's ligament into the pectiueal ridge. If, on the other liand the inguinal eanal of the male he set, as ordinarily it is, well-obliguely, with its walls firm and its rings small, and if, at the same time, the femoral ring be wider than usual, owing to the pectineal portion of Poupart's liganent being narrow, and owing also to an outward yiclding of the femoral ressels and their sheath, which a wasted condition of the psoas and iliacus muscles may pernit, then a hernia will more readily occur at this situation than at the inguinal rings. When cireumstances are equally favourable to the formation of hernia at the groin and at the thigh, both varieties will then coexist, whether the subject be male or female. It secms, therefore, to be in consequence of a weakened condition of the parts in any situation, that a hernia should there occur; hut besides tbis, we recognize other causes, combining to render its oceurrence at the inguino-femoral region more frequent than elsewhere, The inguinal pouches are recesses for the reception of the bowel, and thereby concentrate to themselves the viscernl pressure from whove

The femoral ring is immediately under those pouches, and is itself in a recess formed hetween Ponpart's ligament above, aud the os pubis below, and having the iline vessels and their epigastric liranches on its outer and upper border, and the umhilical ligament generally on its inner side, where this cord raises the peritonzemo in a fold. Fron this it will be seen that the hernix, designated femoral and inguinal, have, in respect to the necks of their sacs, little more than a nominal differenee as to place, for they are divided only by the epigastric wessels; sud the very small interval which those ressels mark is not muelr increased by l'oupart's ligament, for they are behind this structure. In illustration of this close proximity hetiveen the crural and inguinal rings, I would veatare the following remark, as anatomically correct in the majority of cases: if around a point on Poupart's ligament, about an inch external to the pulvic spine, a cirele of an ineh in diameter were described, that circle would cut a portion from each of the adjucent sides of the three rings and divide the spermatic vessels in thic ingumal canal, and the epigastric vessels at its intemal ring. A circle of a few lines more in diameter, drawn around the same point, would touch, ly the outer part of its periphery, the femoral vein. With these observations in memory, we may pass to the separate deseription of femoral hernia, without any likelihood of losiug in the name "fenorval", the important idea that that protrusion is, as to its original seat, as truly inguinal as that which appears through the external ring, and requires no less caution to avoid the epigastrie artery in an operation, at the same time that: it always holds an additional elose relation to a ressel of mueh greater magnitude -the femoral vein, and occasioually to the obturator artery arising from the epigastric.

The structure which is known as Poupart's ligament, in connexion witb the inguinal forms of hernix, which escape from the abdomen immediately above it, is named the fenoral, or crimal arch, in relation to the femoral bernia, whieh passes frono the abdonen immediatcly below it, The simple line, therefore, descriled by this higament, explains the narrow interval at which both varieties of the complaint are separated at their origins. The inner portion of the ligament being disposed honizontally as to its breadth, when the hody otands ercet, isolutes the inguinal from the femoral region in such wisc, that (so to express the idea) it presents the character of an arch whieh at the same time supports an aqueduct-the inguinal canal, and spans a road-the femoral sheath. Extending between the iliac and pulic spinons processes, and being connected with the ingminal aponemrosis and the faseia lata, the femoral arels appears as a distinct part only when those membranes are separated from it, but still, by its posterior surface it is connected witl the fiscia transversalis, and the peritonaum, und these incmbranes are reffeeted from it to the iliae fossa, and down into the pelvis. When the fascia lata is separated from the femoral arch hetween its two extrenus, the parts which pass beneath it, from the nbdomen to the thigh, will be seen to occupy nearly the whole of that space which the uright anterior margin of the iliac bone bounds externally, the horiznutal ramus of the pubic bone inferiorly, and the femoral arel itselt superiorly. Tlint space is irregularly triungular: the upper onter angle, formed by the union of the arch with the iliae spinous proeess, is acute; the lower outer angle, formed by the junction of the iliac and pubic bones, is olthnse, and rendered so by the enred roof of the netabulum; the iuner angle, formed by the union of the arch and pubic hone at the pubie spine, is neute, and is ocenpied hy that process of the alch (Giublurnat's ligainent)

Fie 1- Terioval hernia in, the femala-A, Anterior line apinous proces - B B

 -II, Falcifornm process--1,
external circuminex juc vein. atrotures of fig. 1.-Other parts, marked es in fig. 1
Fis a yiew of the decper striotures of fig. 1.-Other parts, mintsed is in big. I.
$-\mathrm{E}_{1}$ Internal oblique muscle -F, Canjoined tendon- $-\boldsymbol{J}$, Sartorius muscla- K , Itiacus

 ral ressoles.
which, with the conjoined tendon, is attached to the pectineal ridge. Through the middle of this spaee (which the artery marks) the femoral vessels in their sheath issue from the ahdomen, and are borne forwards by the rising roof of the acotalulum, and by the intercening part of the psons muscle. The artery divides this space into two of about equal arens. Of these, the external one is completely occupied hy the psoas and iliacus muscles passing to their insertions into the lesser trochanter of the femur ; and the anterion crural nerve appears close to the outer side of the artery. The space intermal to the artery transmits the fumoral vein only; and as this vessel hies elose to the artery, the interval (when there exists onc) hetween the vein and the outer margin of Gimbernat's ligament may be said to he unoccupied and free for a herniary passage of the howel, lout for the peritonaum, which, by heing drawn across it, oceludes it. Now, althongh an interval may occur between the vein and the margin of Gimbernat's liganent, there is never an interval between this part and the inner side of the femoral sheath; for the fascia transyersalis, of which the sleath is formed, always protrudes in close contact with the ligament. The interval, therefore, hetween the vein and the ligament must, in regard to the fibrons memurane, nlways be the orifice (femoral ring) of a duct (femoral canal), and the width of hoth must be determined by the ligament, for the vein ever holds ite normal position. It is this circumstance which, in connexion with the femoral hemia transmitted through the ring, has made Gimbernat's ligament so much an olject of note, but more so, in fact, than (separntely taken) it should be. It is described as always being the particular seat of stricture, although it is a part which has a common insertion with the conjuined tendon, and the tro are so blended together, that while it is with diffieulty they can be separated in dissection, it may well he douhted if the two are not at the same time divided in the uperation; for both, in many instarces, have insertions of equal hreadth, and when the case is otherwise, then that which projects the more laterally-and the onc does so, perlinps, as often as the other-hecomes the [rincipal object of incision. Gimhermat's ligament, therefore, requires its situation and form to he known, forasmuch, also, as in relation to it we may notice what other parts are as likely as itself to eause constriction. It is deeply situated, and its outer free margin more so than its inner part, for the pectinenl ridge into whiels it is inserted is directed ohliquely hackwards and outwarls from the puhie spinous process, which may he felt. subeutaneously. It has the upper cornu of the falciform process in front, and the coxjoined tendon behind. Its shape is acutely triangular, eorresponding to the form of the space it oecupies hetween the imere end of the femoral arch above, and the pubic bone helow. Its apes is internal at the pubie spine; its base is external, sharp, and coneave, and in apposition with the inner compartment (femoral canal) of the sheath of the vessels. It measures an ineh, more or less, in winth, and less than half an inch in height; for it is turned slautingly towneds the abdomen, owing to the femeral arch being on a plane anterior to the peetineal ridge. It is broader in the male than in the femate-a fact which is said to account filly for the greater frequency of femoral hernia in the latter ses than in the former (Monro). But as this condition of the part is only relative, it is clear that the effeet does not nnswer to that cause alone; for if the ligament in the make is hronder, so likewise in the female is the space which intervenes between it and the femoral vein, hy renson of the greater length of the pubie hone. To thie latter fact, therefore, may the effect be more reasonubly ascribed; for while the female os pubis is always longer than that of the male, the hreadth of the ligament is as linble to wary in the one sex as in the other. In this description of the parts concerned in femoral hernia, added to that already given, 1 know of no omission except that structure which auntomists have named the deep jemoral arch, and which, when it is distinguishable, appears as a bund of fihrous substance, spanning the femoral sleath more elosely than does the superficial arel. When present, it would, by its position, serve to prevent the formation of a herais, hy supportiug the neck of the femoral sheath, in close apposition with the vessels externally, anteriorly, and internally; in whieh latter position it unites itself with the conjoined tendon behind Gimhernat's ligament, and thus with them combines, as well to determine the form and uren of the ring, as to constriel the hernia.

As, in respect to its cause, and the monner of its formation, a femoral leraia does not differ from an inguimal hernim, the same gencral remarks which have been made in a former pleee, illustrating that subjeet, would, if true, apply to both varicties of the complaint. It seened to me not unreasonable to doubt that the sue of a milly-forned inguinal hernia was a production in actual substance of that small portion of the peritonæum whiel the viscus nt first pouched; and that doubt even more strongly
suggests itself in regard to the sue of a fenoral hernia protruding through
the femoral ring. This plnce is seldom, even in the female, of greater diameter than half an incl, evell when it transmits a bernia of the largest size. It is girt all round hy dense, unyielding structure; its upper and inner arcs are formed by the superfieial and deep femoral arches, and the dense fibrous bands of the eonjoined tendon and Ginuhernat's ligament; its outer arc is forned by that septum of the femoral sheath which isolates the vein from the femoral eamal; and inferiorly, the fibrous memhrone is supported on the pulic hone. With the femoral ring so formed, and of so small an area, which no protruding force can possihly render larger than it is naturally, it may indeed well remain a question whether or not the sne whieh emerges through the saphenous opening, of a size equal to that of a elosed adult hand, he the result of a gradual dilatation of that part of the peritoneum which at first occluded the ring. To those who could see enuse for helieving tlis, inasmuch as the intestine itself is the same organ nfter its hemia as hefore, I would answer that there is no amalogy upon which to found that reasoning. The intestine is free-moving within the abdomen, and so loosely suspended by its inesenter's, that through a wound of the atdominat parietes it would suddenly protrude at the fullest berniary length; hut how should the peritoneum, laid as it is, evenly, and closely attached to the inguinal parictes, undergo a dilatation, whether quick or slow, to the same degree, without rupture; especially through the femoral ring, whose salient edges are sufficiently sharp and resistant to cut that menbrane, under ordinary pressure? If the intestine enter the femoral canal by sudden pressure from ahove, it may he taken for granted that it could not have done so exeept hy a rupture of the peritonæum, And as we know that a bernia here occurring is more frequently than otherwise the effect of sudden efforts of the body, from which we may infer a rupture of the membrane; and while we also find that in whatever manncr this hernia he formed, a scrous sae is the immediate envelope of the bowel, such sae must, in many instances at least, be a secondary formation, even when it is of no greater volume, and has advanced no farther, than the femoral eanal whieh contains it. What is true, then, of its first stage, must be true of all its future stages; for whether the howel in the first instanee rupture tbe peritonæum, or, after forming for itself a primitive sac, wear through this, then the howel will leave this menhrane helind it in the eanal, and will progress, devoid of a sac, if it does not furnish for itself one, by an assimilation to its own serous surface, of those tissues which are opposed to it. This it is quite possible for the howel to effect, so slow are the degrees of its advancement. The aphorism, "Natura non facit saltus," is applicable to the development of a hernia, when once entered into the canal; and hence it is that we cannot elearly distinguish between the faets of a howel protruding the serons membrane from its original seat, aud forming that membrane in the degree of its own progress. But as a matter of rensoning the latter mode would appear to be the true one; for the quantitive differenee hetween the sae of a bubonocele and a scrotal hernia, shows the impossihility of fashioning the greater from the less; for though the one of greater volume may be distended from the lesser one, the former must exhilit an attenuation of its strueture corresponding to the degree of its distension; and at the snme time that the physieal cbaracter of the peritonanm is suels as not to admit of that kind of increase, we know that witb its enlargement of volume the sae does not undergo a thinning in substance, lut oftentimes suel an increase, as to he nemrly half an inch in thickness. In the anatomical and the pathological condition of the parts, 1 observe the faets to he confirmatory of the present views. Judging from the physical characters of the parts in which the internal inguinal and the femoral rings are formed, it certainly would appear that a sac may at first he produced by dilatatiou of the peritonxum at the former place, by reason of the parts there heing more yielding than at the femoral ring. But admitting that a primitive inguinal sae has every appearance of heing the result of foree, originating within the aldomen, it appears to me, on inspecting the state of a harge scrotal hernin and its contents, that its volume is due more to the traction of the gravitating herniary parts, than to abdominal impellent foree, the one force having heen sueeeeded hy the other at a point, in time, prohably, when the hernia hecame pendent from the external ahdominal ring. In this ease the peritonxum appears as dragged out after the howel, hut to such extent only as the inereasing area of the internal ring admits. When the coecum or the bladder forms the contents of suel a hernia, those viscera are denuded of their partial serous envelopes, still more than they were while at tbeir proper seats within the ahdomen, and proving that the peritoneum has not that eapability for extension whieh some suppose it to have. That the peritoneum furnishes for the sac, however large this he, no greater portion of itself than that whieh would equal the area of the herniury opening, there is

direct anatomical evidence: a hernia, whether of the inguinal or femoral kind, which protrudes between the cpigastric artery and the umhilical cord, leaves those adhereut to the inguinal wall still in the same position as they normally occupy, which could not be the case if a greater breadtl; of the membrane were protruded, for tbey would protrnde with it, and he found in the berniary canal attached to the sac. This never occurs, and therefore tbey are as marks of that small extent of the membrane which has protruded. Let tbose, tben, who would upbold the doctrine that a sac must be a production of the peritonæum, reconcile to themselves, if they reasonably car, the idea that a sae pendent to the linees is an extension of that part only of the peritonæum which is limited hy the cpigastric artery externally, and by the umbilical cord internally.

Of the femoral hernia, several varieties have been seen, and, like those of the inguinal bernia, they may he named according to tbeir respective situations. In relation to the femoral vessels, the bernia has been found anterior, posterior, external, and internal. The latter is by far the most common situation, so mucb so, that the name "femoral" hernia usually implies a protrusion into the femoral canal, through the femoral ring. Of the three former varieties, a brief anatomical notice will be therefore sufficieut. The mode in whicb the femoral sheath is produced from the transversalis fascia, and hecomes simply applied to the sides of the vessels, renders it of course not impossible for a heruia to enter the sbeath at any point around its neck; for there is nothing to defend this part hut the peritomeum, reflected from the inguinal parietes to the vessels. Instances of femoral hernia, external to the vessels, have heen ohserved by MI. Cloquet, Hesselbach, and others. The former anatomist has seen a hernia descend the shcath once in front of, and once behind the vessels. I have scen an example of the external hernia in which the cercum protruded, and another in whicb the sigmoid flexure of the colon was the herniary viscus-the former baving heeu only partially covered hy a sac, the latter entirely enelosed in one. Hey, Sir Astley Cooper, and Scarpa, have never seen the external hermia, and this must be good proof of its rarity. Tbe causes of this circumstance are physio. logical and anatomical, and accord with the views I lave enunciated regarding the mechanism of the trunk of the body as uffecting its viscera. The muscular roof of the ahdomen, acting upon the viscera with vertical pressure, and the muscular sides and front of it acting at the same time with lateral pressure, comhine, in the upright posture of the lody, to concentrate all the lines of force tomards the pelvic organs, throngl the medium of the elastic howels. This is the effect of their action, whether for tbe purpose of voiding the pelvic organs or not. The force so directed is diverted from the iline regions extermal to the femorml vessels, and takes effect on the inguinal regions, in which the temoral ring, the ordinary sent of femoral hernia, is situated. The form of the ahdomen contrihutes to concentre the force originated in its mascular walls. Tbe ilio-inguinal fossa, of whicb the iliaeus musele is tbe posterior boundary, and the transversalis muscle the anterior, is terminated below hy their meeting at a line corresponding witb Ponpart's ligament; and this line is so inclined from the iliac spinous process, externally and above, to the puhic symphysis, internally and helow, that the moveable viscera under pressure slide towards the median bypogastric region. Whist the pressure is thus borne from the ilio-inguinal fossa in all efforts, it must he as a consequence alone of the laxity of the parts where the femoral vessels are transmitted, that a hernin can occur outside, in front of, or hehind them; for in the natural bealthy state of those parts, their union is sucb, that no ordinary force could sunder them; and this uuion is very much owing to the manner in whicb the femoral arclres are hound down hy the intermuscular septa outside tbe femoral sheath, and by the intervascular septa witbin it. When a femoral heruia has taken place on the right side, hefore, hehind, or outside the femoral vessels, the existence and
the form of its sae will depend on the organ protruding. 'fbe cecum, when situated low in the diace fussa, and but partially invested by the peritonæum, and without a mesentery, may protrude from behind that memhrane, and passing out below the femoral arch, will denude itself still more of its serous covering, and present its cellular coat cxterually; while, if it have any form of sak, this will cover it only anteriorly in some degree, and appear as drawn out after (not pusled hefore) the viscus. Such appearance cannot, I believe, ever he presented by the sigmoid flexure of the colon; for this part, thougb having lute a short mesentery, still hangs so free against the feinoral areh, that it opposes the parietal peritoneum, and if it does not rupture thit membrane, camot protrude, except hy dilating it iu the form of a complete enclosing sac. Such was the appearanee of the sac alout the hernia of this viscus wbich I have secn. For the same reasons-viz, their free pendency, and their opposing the parietal peritonaum, neither the small intestine nor the omentum can protrude ahout the femoral vessels, unless invested by a suc, if they have not ruptured tbe membrane. In all those eases, a fascia propria, derived cither from the fascia transversulis, or from the sheath of the ressels, will be found as a covering, if that membrane have not heeu ruptured. Whien we consider the dense unyielding anture of the iliac part of the foscia lnta, beneath wbich any one of those hernin must necessarily he situated, its obstruction from permanent comprcssion will he readily conceived; hut the effects of this are in a great measure obvinted by the very wide neeks which those hernixe nsually have, in consequenee of the weakness of the parts transmitting thera; for if this weakness did not previously exist, the herviee could not have occurred. The anatomical relations of those heruiz are ensily to he learned. If the bowel protrude beneath the fernoral areh, anterior to the ressels, its sac will necessarily he in contact witb them, for tbeir sbeath will form its fascia propria. When the hernia takes place exterual to the vessels, it mny also enter the sheath; hut if tbe filres of the deep femoral areh be stroug enough to prevent its doing so, tben the fascia transversalis, hike the peritonam, hecomes protruded before the howel. In this hervin the circumfles iliuc artery will be eitber in front of, or bebind, the neek of the sac, according as tbat vessel is situated bigh or low, in respect to the superficinl femoral arcb: the anterior crural nerve must always be hehind this bernia, for the nerve issues on the thigh from under the psoas muscle. When the hernia is behind the femoral vessels, it must be within their sheatb, on account of the point from which it has burrowed heucuth them being within the aldomen, eorresponding witb the place wbere the vessels make their exit.
Tbe hernia wbicb takes place interually to the fenoral vessels is owing to these couses-viz., the concentration of the force which compresses the howel to this particular locality; the horizontal position and the width of the femoral ring, which is but fenced hy the peritonecum and the sulserous membrane. As the course to he taken by the riscus, when this hernia is heing formed, is through the femoral ring and canal, the structures which have already been noticed as hounding this passage, will of course hold the like relation to the neck of the hernia. The manner in which this hernia is formed and tukes its investments in its descent, may be briefly stated thus:-Tbe bowel, if the peritoneum nt first resist rupture, dilates that memhrane where it closes the femoral ring, and pusbes it before itself into the cunal. This covering is the herwial sac. In addition to the sac, the crural septum, which is but the suhserous tissue crossing the ring, lias at the same time entered the canal as the seeond investment of the howel. The hernis is now cuclosed in the canal, the sbeath of which forns its fascia 1 ropria. The aren of its weck is determined by that of the ring, and the volume of it is limited to that of the camal. In this stage the lernia is so small and so bound down by the iliac part of the fascia lata, whicb eovers it by the falciform border, that it cannot be distinguished on the superficies, as it forms no

FIGURES OF PLATE XXXVI.

Fig. 1.-Fenoral hermin in the Fomalo-A B, Anterior, superior, and inferiar ilino spinoos procesess-C, Pubic spinens process-D, Ue tenino lignment, -E, Hiacus nuscle in section-F, Anterior exural nerve, cut-G, Fo-s Fishin proprix-K, Ginbersuat's ligu* cut-- I, Femoral vein, cut-- L, Artivular bend of femur.- Mr, Ramus of tecliuw.

 muscla-F, Peritonoum; ; f thint nembrano forraing the neek (J J K) of the herniarg
 aperture ot the cruanl ring. - K, Situation of external ingumind ring--L, S
of iselinm, - M , Orinary ladder fullen and collupech- N , Crus cliteridia
from the cmbrace of the femoral ring.- A A, Abdominal parts of che enall intestinc.- B,

Fine constrictup t. Extermal ingtiond bensin in the fixalta-A, Aterior superior ilano apinous

 Femoral herzin in tho canal ligment-O, surtorius muscle - P. Facia rovering adduc-
 tho herningy sios
of that part of the hernin, however large swelliup. This is the condition of that part of the hernin, however lhis and in whatever situation its fnmused by the anatomical condition of stage its finher progress is de cannot deccent the femeral canal fouther the parts contiguons to it. rein; and it will rather force its way through the saphenons opening, within which the imer wall of the cnual is weak und unsupported. This part it next passes, cither by rupture or lyy dilatntion, aud appears nt. the saphenous opening as a rounded swelling, the onter side of whicb is honnd down by the falciform process. In general the herma dilates the inner side of the conal, and this part becomes then its fascin propria. If it have ruptured the ennal, the sac appears of course without any such covering. In either ense the hernin, increasing in size, turns forwards and upwards over the margin of the falciform process, and ultimately rests upon the prbic third of the femoral arch, over or outside the extermal inguinal ring. It wonld appear to be the cribriform part of the superficial fascia attaebed to the falciform proeess which turns the heruia thes upwards, and perhaps this couse is also given to it by the saphena and other superticial veins, which enter the saphenous opening always below the hernia, and by the mass of Iymphatic bodics here situated. The hernia, rising at the saphenous opering, takes its third (fourtb, if the subserous tissue is to be counted) covering from the loose cribniform part of the superficial fascia masking the saphenous opeaing. Directing notice now to the genemal form of the hernia as determimed by the course it has taken when completely developed, it will appear of three parts, bent at acute angles to each other-the first part, in the femoral canal, is straight; the second part, turning forwards through the saphenons opening, is bent in respect to the first; and the third pnrt-its fundus, resting on the femoral arch, is beut in respect to the second. Those threc duplientures are caused by the parts forming the saphenous opening holling their place while the hemia is passing by them. The bloodvessels with which the hernia is in close relationship are the following: its neck has the pricastric artery close above it, nud the spermatie vessels separated from it only by the femoral arch, which at this part is turned nearly horizontal, and forms the inferior side of the inguinal canal. Not unfrequently the obturator artery arises from the epigastric, and descends close to the outer side of the neck of the hernia; in some instances it has been seen arehing the neek, and bebind Gimbernat's ligament. Within the femoral camal the herniary bowel is separated from the femorni vein only by the sae and the septum, which latter is the outcr portion of the canal. Wheu past the saphenons opening the hernia is crossed by the supericial pudic artery and by the hypogastric vein, white below it the saphena vein joius the femoral. When the fundus of the hernia is at the external ring, it again comes into apposition with the spermatie vessels, and if the hernia be large and rotund, the spermatic cord descende, toncbing its inner side. This relation of the hernia to the vessels is (cxcepting the spermatic) the satuc in the male and the female.

The co-existenec of ingninal and femoral hermia in the same individual is lyy no means uncommon. We find it oceurring in the female as well as in the mule, and more usually, perhaps, in the former sex. This differenee would seem assribable to the circmistance that, while the femoral hemin is more cominom in the female than in the male, and the inguinal heruia more so in the male thon in the female, the inguinal bernia lonpenes in the femnle more frequently than the femoral does in the male. The anatomical reason for this evidently is that the female inguinal rings and camal are not so often preventive of hernia as the male remoral ring and canal. The internal inguinal ring in both sexes is pretty much of the same area, though transmitting the spermatic vessels in tbe one, and only the uterine lignment in the other, whercas in all instances, the femoral ring is wider in the female than in the male. But the point of most practical interest to olserve is that, as in the case of dunble inguinal hernia, the femoral and inguinal counteract the development of each other. We seldom find n complete protrusion of the howel at the saphenous opening in an individual afieeted with scrotal hernia; and when the former exists, the inguinal hernia, if it bave taken place at all, suldom presents itself beyond the inguinal eanal. The canse of this is that the inguinal and femoral rings are so close together that the sume coil of bowel covers them, and therefore the more it protrudes througb the one ring the less it can protrude throngh the other, and thus the grenter hermin ahways tends to the reduetion of the lesser. This remark nunnot hold true of tbe omentmon and the bowel, for those parts being distinct, may, on becoming lerniury through different rings, progress outwards independently of caeh other. But it wonld seem that the heruin of either part ocenpying the one ring does in some degree
contrict by its pressure the otber ring, and thereby prevent protrusion through the latter.
The diugnosis of one variety of femorat hernia from another senreely nceds a conment, for the two so seldom exist together. And when any variety of the complaint happens ulone, its locality will generally suffiee to distin. guish it from any other. An incipient femoral hernia witbin tbe femoral canal is difficult to recognise in all individuals, because, being hound down by the fascia lata, it forms no superficial sweiling, and often, only for the first time, has been known to exist when the sgruptoms of strangulation appeared. An ingninal bnbonocele is likewisc masked by the aponeurosis of the oblique muscle, which resists its swelling, but never sin much as the fascin lata covering an incipient femoral bernia. The diagnosis of femoral from inguinal hernia may be hest ascertained hy considering in contrast the respective positions assumed hy both. As the femoral ring is immediately below and between the two inguinal, the relation wbich they have to the inguino-fenoral groove will give the distinction of the hornice transmitted through them, provided one or the otber forms a visible tumour. A femoral hernia cannot possibly be mistaken for an inguiaal bubonocele till the former has proeeeded to its full limit near the external ring. But even then their distinctive features are very well marked, for the inguinal hernin is ill defined behind the aponeurosis of the oblique musele, and is above the femoral arch, while tbe femoral heruia, being superfieial to tbose parts, is moveable upon tbem, may be withdrawn from them, and presents its body traeeable to where it sinks into the saphenous opening more distinctly on the thigh than any form of inguinal bernis can cver be. An inguinal bernia manifests its proper charater more and more plainly as it advanecs from the external ring to the top of the testicle in tbe scrotum. If it be of the external kind it will appear as deseended within the sbeatbs of the cord, and the spermatic vessels will be behind it: if it be of the internal kind, the cord will be on its outer side. A femoral hernia in the male, when appearing tbrough the saphenous opening, has the cord on its inner side invariably; and wbether the male or the female be the subject of it, or whetber or not it cxists with an inguinal hernia, if it merely occupics the saphenous opening, it appears so evidently on the tbigh, bclow the fernoro-pubic groove, that its speeial nature becomes at onee evident. A complete femoral hernia is globnlar in form; an inguinal hernia is pyriform, and even when the two touch each otber, the in-guino-finmoral groove corresponding to Poupart's ligament remains in some part unobliterated between them, however obese or emaciated the individual may be. But though a femoral bernia, when developed to its fill stage, may in general, witb ordinary judgment, he distinguished as such by the place of the swelling, this outward sign docs not attend the hernia in the first stage of its formation, when it protrudes merely into the feumoral canal, and where, oceult, it may suffer strangulation, and therehy be followed by effects just as cvil as those resulting from its strangulation when of the largest size. The same may happen in the inguinal region, where tbe bernia is so small as to form no appreciable sweling in any ense, and more especially when the subeutancous adipose tissue is abundant. Under those cireumstances it becomes impossible to tell (cven when the gencral symptoms declare tbe prosence of the hernia somervbere) at which of the tbree rings it protrudes, so close are they together, or whether it protrudes througb cither of them at all. That it does not do so may be best certificd by its presenee clsewhere, and hence the necessity of a general examination of the body.

The dingnosis of femoral bernia from other discases which may happen in its usual locality, is oecasionally required. The lymphatic bodies, situated in a mass at the saphenous opening, would on frecly suppurating resemble the hernia as to the form of the tumour, its place, its tenderness on pressure, and its soft elastic fecl. Thicir distinction is in such case to be known by tbe only physieal sign, that of flnetuation, which attends tbe absecss; thougb even this wonld not answer if the hemiary sac, as frequently happens, contrined serum. The gencral symptoms and the bistory of eacb affiction-the past or present cxistence of some cause of irritation of the lymphatic bodies, and tbe presenee in some degree of visecral obstruction from tbe hernia, must then serve to distinguish them. A fatty tumour overlying the saphenous opening, and being prominent, cireumseribed, soft, clastic, and as if fluctuant, would reseuble a femoral heruia so closely ns only to be distinguished from this by its bistory, its time of growtb, and its being umaccompanicd by visceral impediment. Such a thmour is not nncommonly found in the axilla, and the close amalogy between that region and the groin is anatomically cxpressed. The femoral veins at the saphenous opening are linble to varicosity from the obstructing pressurc of an ovarian or other ahdominal tumour, ns also from the gravitating pregnant uterus. In this state the

veins are said to simulate, in form, a femoral hernia, and, like this, to dilate perceptilly on coughing; but the eause heing known will leave no douht as to the nature of the effict. Aneurisa of the common femoral artery will appear as a circumscribed tumour in the neighbourhood of the saphenous opening, or projecting through it like a hemia; but the cardiac impulse and the otber signs of aneurism are at all times clearly characteristic of that disease. Psoas abseess, from caries of the vertebrey or pericecal abscess, from caries of the iliac hone, when pointing below Poupart's ligament on the thigh, in the course of the femoral vessels may appers like a femoral hernia as to form, size, and situation, also by the dilatation and the sense of impulse wben the patient is made to cough. In general, however, the tumour of the abscess is external to the vessels, wherens tbat of the hernia is generally intemal to them; and the former is, moreover, always fluctuant, while the latter is tympanitic, except when its sac contains serum, or when the bowel is distended with the matter. That the case is one of alscess instead of hernia will he always evident from the coustitutional symptoms, even if the plysical signs be less distinctive of either than they usually seem.

The seat of stricture of a hernia transmitted through tbe femoral ring and canal is nlways in close proximity with the neck of its sae. In this particular the fenoral hernia is anatomically more like the direct than the oblique inguinal hernia; and the two former are, hesides, protrnded through structures of fibrous substance only. Dut the femoral hernia is, owing to the disposition of the parts encireling its neck, much more liable to constriction than either of the inguinal varieties. To specify any single band of fibrous tissue as heing the sole agent of constriction in a femoral herma, must, from its exclusiveness, be productive of some crror. The close relations of the parts show clearly that several of them participate in causing that result. The conjoined tendon, the deep and superficial femoral arches, with Gimbernat's ligament, baviug a conmon inscrition into the pectineal ridge of the os pubis, and the faleform process of the saphenous opening being immediately in front of tben, and connected with them and with the puhic spine, renders it evidcut that all those parts together hind the neck of tbe hernia, and that, for the liheration of it, they have all to he divided. Those parts in union overarching the hernia, resist it in all instances by a sharp edge, which abruptly indents it more or less, and accorling to the degree in wbich they encroach upon it, narrows the intestinal canal, the continuity of whicb is not unfrequently maintained ly only a mere slit. Neither the rounded ramus of the os pubis nor the septum of the femoral sheath which separates the intestine from the femoral vein, and whicb lies in a plane sidelong with the hernia, can ever offier such a kind of constriction, though they form immovahle barriers to its expausion. But while the structures which form the femoral ring thus unyieldingly resist the lermia at its neck, the peculiar sinuous course which it takes from its point of origin to its place on Poupart's ligament is, in additiou, a very principal reason why this hermia is so frequently strangulated. The neck of the sac is never of greater girth than the original area of the fenoral ring i it cannot be, for, unlike what may occur at the inguinal rugs, the weight of the bernia cannot operate for its distension. A fenoral hernis, however large, does not hang gravitating towards the median line, like in inguinal hernia, and it is to thiskind of force that the gradual dilatation of the neek of the latter is principmily due. Tbe neck of the femoral hernia may, therefore, be considered as always suffering from constriction. The part whicb occupies the canal is also much compressed; and again, where the hernia has advanced so far as to turn over the falciform process, this part gives it a sharp duplicature, which of itself causes a considerahle inpediment to the canal of the bowel. This hernia is always affected hy stricture of the passive kind-the fihrous hands with which it is in eonnexion compressing it rather by withstanding iuertly the force of its protrusion, than by reacting against it. There are no
muscular fibres crossing at any point of its course, and the bowel itself is the only part which manifists action. In the femoral hemia, therefore, much more than in the inguinat, it is of importance to note the differeuce hetwecn constriction and strangulatiou-tbe latter state being effected as the result of an action solely of the bowel itself, which, after entering the feuroral canal, hecones of larger proportions than while entcring it; and owing to its reception of the intestimul natter, to the accumulation of its serous secretion, and to the obstruction of its circulating ressels. Giving all due regard to this circumstance, the replicement of the bowel by the taxis or by the cuttiug operation will be effected with the more facility.
The taxis is a procedure whicb oftener fails of success in respect to a femoral than to any other of the ordinary kinds of hernia. This result is due more to the anatomical than to the pathological condition of the parts concerucd in the femoral beraia. In uddition to such canses as an adhesion of the bowel to the sac, and whicb are as liable to wecur in the one varicty of the complaint as in the other it is true tbat the body and fundus of a complete, fully-formed femoral hernia bear as much greater proportion to its neck than is manifested iu regark to those parts of an inguimal bernia. The latter oftener attains a greater bulk on the whole absolutely; but in the degree of its increase in volume there occurs an increase in the area of its neck, owing to the traction which, by its pendent weight, it exercises on the apertures transmitting $i t_{i}$ but this result never accompanies a femoral heluia, for the causative force is absent. The neck of a femoral licrnia remains of the same width as originally, however great the size which the protruded part has attained; and consequently the greater the volume of the protrusion, the greater the difficulty of its reduction. Besides this, the neck of this hernia is very deeply situated ${ }_{1}$ and out of the command of the hand; whilst, moreover, the frequent bends which it makes in its adrance outwalds from the embrace of the binding pirts, pretent the possibility of exercising compressing force dircctly towards its neck, which caunot otherwise be iufluenced; and if not this part, no otber part of it, however urged, ean tend to the reduction. On this account 1 am inclined to helieve that the supine posture, which induces the herniary viscus to follow hy traction the internal gravitating organs, and the compression by which the howel and sac are partially unloaded of their contents serve more especially for the reductiou of this kind of hemia than of any other. In aid of those means, the relaxation of the inguino-fumoral region will no douht contribute much; but as to the impulsion of the hermia by the operator's hand from hefore lackwards, that act, per se, can be of no useful effect, for reasons bcfore noticed. And of what effect either the hath or medicines can be in loosening the constricting struetures of a temoral hernia especially, I cannot, for my own part, conceive, seeing that those structures are of fixed, inert, fihrous tissue. If the latter means can prove to he anything more than a pis aller in practice, why bave tbey so often failed, eren with the most judicious manipulators, and when (as proved in the entting operation afterwards undertaken) no adventitious product cxisted to hinder the replacement of the bowel? We may give to a luxatiou of a joiut and to a hernia, with equal Propricty, the name disheation, so far as the part in cither case is unscated from its normal position; nul reduction may be the term fittiugly enough applied to the replaceulent of either part: but whide, iu respect to the joint, we can plausibly admit and experience the adrantage of relaxing museles hy physicul aud therapeutic aycuts, neither reason nor experience seems to indicate the reduction of a bernia on tbat principle; for as ruscular fibre in uowise tended to prevent the protrusion, so muscular agency camot be supposed to himder its reduction. The femoral hernia bas no immediate eounexion with muscles, except hy its passage througb or aside of their tendons and tissues similar to teudons which from their nature, can admit of no relaxation, if this be

Figules of plate xixvil.

Fig. 1.-Femoral hornin iu thio male.- A, Hino nuterior supcrior opinous process - \bar{B}, Spermatio cond.-C, Herninl sac.-D, Falciform procese of tacina
 lyauphatic bodiss. -1
 Fig. 2.- Fosterior viow of the femoral hersuin--A, D, Peritonvum- - E, Horizontal

 tion. -M , Spine of isclium- -1 , deferens, with spermantie vessels

Fig. 3.-Anterior view of the fomoral riug, and neck of tho femomal hernin in the anale.

 Femonla artery; and he
attainalle by the passive motion of the bimb to a particula yosition.

When the thimh is bent inwards to the lyypogastrium, while the body is supine, the fascin lata and the inguinal aponeurosis arc relased, together with the fumoml nrehes between them. This may nlso reader Gimbernat's ligament. in some degree less tense thinn previnusly, but 1 donbt if the situation and comexions of this part, and of the structures eambincel with it, ean be so far influenced by the position as to facibtate in any rery materinl degree the reduction of the hernia; for the truth is (as we find on inspecting the parts in the dead sulject with whielh relaxation is complete), that the dinmeter of the femoral ring remains the same under all circumstances. The adduetion and flexion of the thigh effects, however, in a marked manner, the relaxation of the falciforut process; and this condition of the part affords the mamipulator a more immediate command over the herniary portion in the canal and ring, and fucilitates the diminution of the herniary contents hy the eompression exerted. If this decrease iu volume cannot be effected, it stands to renson that impulsion backwards, cven in the proper anatomical direction, can he of no avail, for the herniary mass ontside the femoral riner is mony times grenter than the ring itself in girth, and Therctore the re-passage of the hernia amounts to a physieal impossibility. The frequency of failure in the reduetion of this hernia by the taxis is simply owing to that circumstance. It is only inasmuch as the force exerted in the mode of impulsion induces the same resnlt (a lessening of the bemiary quantity) as compression, that success attends the taxis. But as that result cannot be reabized by either kind of foree, except according to the anatomical relations of the parts, this subject demands consideration likewise. Supposing the hernia to rest upon the falciform process, and touching Poupart's lignument, it is evident that, if the thmour be urged in tlee same direction, it must tend not only to inerease the prutrusion by a dragging extension of it. from under the process, but ulso to injure it against the opposing edge of that part. Thercfore, the fundus of the hernia requires, in the first plaee, to be withdrawa from its superficial situation at the groin, and brought below this part to within the eompass of the saphrious opening, in order that its contents may be repassed, under the faleiform process, townds the femoral ring; and now, in the degree that compression reduces tbe hemiary contents, of whatever kind they arc, the traction of the bowel baekwards by the gmsitation of the parts in the abdomen, will he felt to aecomplish the and desired. In its retreating, the howel emits a gurgle, elenrly indicating that its motion is one of traction only; and in order to promote this motion, it is evident that the pclvis and loius sbould be supported at a higher level than the thorax, at the same time that the thigh is flexed inwards. एpon this prineiple of position 1 lately effected the reduction of a femoral hernia in the female, wbile the surgeon was armanging his operating apparatus.

The opration for the division of the parts which constrict a hernia in the femoral camal should be so condueted that the ineision through the intugunents may admit of reaching those parts with most facility. Tbey are always to be found on the imner side of the neek of the sne, and this, fortunately, is tbe place where the ineision may be made witb least dinger to important bloodvessels. The fibrons bnnds constituted of the conjinined tendon, fimbernat's ligament, and the upper corm of the falcifurn process, are the parts which sharply indent the neek of the hemia; but it may be presumed tbat the bowel suffers constrietion throughout the wbole length of tbe femoral canal. In both sexes, the situation of the femoral vein close to the outer side of the neek of the sae, aud the os pubis under it, render the upper and inner side of the femoral rugg the only available places for incising it safely and effectunlly; hut in the male the spermatic vessels, bere descending, forbid too free an incision, while in the female the utcrine ligament-a structure of no such importance-ulone exists. Wben, however, we take into eonsiderntion that the bladder, in its distended state, rises above the pubes behind the femoral riug, nnd that the obturator artery derived from the epigastric occasionally bends over tbe neck of the hernia, it will appear thut there is no direction in whicb an incision of the femoral ring ean be reconmended free altogether from objeetion. The bladder may, however, be placed ont of dauger by emptying it, as it then eollapses below the pubes; but if that varicty in the eourse of the obturator artery exists, what arntomical knowledge ean direet the histonry so us to nvoid womding it?

The incision throngh the skin, if mule in reference to the constricting prits, should commence at a paint a little to the outer side of the external iuguinal riug, and be earried thence vertically over the hernin parallel with, but to the imner side of, the middle of its fundus. From
the apper end of this incisiom, another slowter one shont be
corresponding with the purlic third of Poupart's ligament, so as to allow of the skin heing drawn apart, to reach in the after stages of the operation the scat of stricture, which is very decp. This sccond incision will be fourd of advantage, in enabling the opcrator to prevent the neck of the bernia swelling ahont the bistoury when within the strieture, that thereby the bowel may escape being wounded. The skin having been divided, the subcutancous adipose substance above and below the femoro-pubic fold, and which varies in quantity considerably in different individuals, should be cut in the same manner. In doing so, one or two small arteries and veins (superficinl pudie) may blced, and some lymphatic bodies be exposed. Benenth the adipose tissuc and the superfieial fascia, the fascin propria of the hernia will next appear, when present; but this is not always the case, either as a consequence of a rupture of it, or a thinning of it by the berniary protrusion. The fascia propria, in most instances, so adhcres to the sae, that the two have to he trented as one membrane, whether it be found necessary to divide them or not. When the fibrous and serous membranes are so conneeted, of course, if it be not proper to open the latter, there eau be no necessity for dividing the former. But sometimes the two eoverings are scparated by in intervening layer of falty substance which so mucb resembles omentum, that when the fasein propria is divided, this membrane then revealing the fat, mny he mistaken by the operator for the serous sac itsclf, and the case for one of omental hernia. This layer of adipose substance is gencrated in the meshes of the sub-serous cellular membrane; it is more frequently fond in the oblique inguinal and the hernia which occupies the femoral canal, tban iu amy other; and this may be aecounted for natomieally: Both these hernie when about to form take their fascin propria from the tubes of fibrous membrane investing the ressels whose course they respectively follow; and the sub-serous tissue which fills those tubes is already sufficiently abundant to form a distinet investment for the herniary bowel, and (when loaded with fat) to keep the serous and fihrous envelopes separate. In sucb a ease, the fascia is to have a direetor passed under it, and to be eautiously slit open on that instrument, so as to bring the true serous sac in view, as far up as the femoral ring, if possible. This bcing done, and the bernia having been drawn downwards and apart from the inner side of the ring and eanal, the dircetor-a flat broad one-or the tip of the left forefinger, is now to be pnssed throngb the ring, at the interval made; the groove of the director, if that be used, being of course turned from the hermia. The position of the direetor being now between the neek of the hernia and the inner are of the ring, that instrument may be considered as ineluding all the eonstrieting structures, exeept the neek of the hernial sae; and now when the probe-pointed bistoury is slid along the groove of the dircetor, both instruments forming in neute angle with ench other, and the eutting edge of the bistonry turned upwards and invards, the following-mentioned parts are to be divided successively, but each to sueh extent only ns it will be felt to constrict-viz., the upper cornu of the faleiform proeess, with that part of the inncr side of the emal beneath it, and next more deeply situated, the fibrons band formed by Gimbernat's lignment, the deep femoral areh, and the conjoined tendon; and, if nceessary, the contiguous part of the superfieial femoral areh, taking care not to wound (in the male) the spermatic vessels. The inward direction of the incision gives security to the cpigastric artery, so that if any important vessel be found to bleed, it is in all probability tbat variety of the obturator already notiecd, and to seenre it will demand an extension of the ineision so that it may he reaebed. The constrieting parts now named being severed, a trial to restore the hernia to the abdomen is to be made, when, if any impediment still remnins, the eause of it is citber a thickened state of the neck of the sae to whieh the bowel may be adbering, or bands of false membrane may connect the sac and bowel elsewhere. In either ease it will be nceessary to open the sae and examine its eontents; and in doing so, thant necessity may appear for other cogent reasons besides: in in femoral hernia, more partieularly, the bowel, where it has been girt by the unyielding ring, is npt to retain its eonstrieted form even when liherated, and in this state it is to be regarded as efleetually obstructed as previonsly to tbe operation.

In the operation for the femoral hernin now briefly deseribed, when the prineipal requirements are kept prominently in view, they will firnisb a rational answer to each of those questions whieh high authority appears to have left sub judice-viz., as to the preeise sent of the stricture, and the propriety of opening the suc. With regard to the first question, there can be no douht that, whatever other parts may be found during the operation to eonstrict the bowel, the femoral ring is and must nhways be a chief eause of that result; and as the immer side of that ring is the only part which, in the normal amntony, enn be safely ineised,

and with all the required effect, this must. ever determine the necessary course of proceeding. With regard to the second qnestion, the answer would appear to turn not upon the ill or harmless consequence of a wound of the serous sac in one instance, or the maintenance of its integrity in the other but. rather as respects the state of its contents. When the sac has not been opened, the result of the operation has ${ }_{1}$ we know, not always been successful; and when it has been opened, the issue has not we also know, ever been fatal; and thus with the opposite forces of facts regarding the condition of the sae neutralising each other, it surely is not without good renson that we may consider the bowel itself to be the real sulject at fault, in whatever state its envelope exists. To liberate the strangulated bowel is in all eases the urgent necessity; and it is this organ which h_{1} however seemingly well the operation has been performed is still the sole cause of ill consequence threatening. It is admitted that
many uecessities require the suc to lor apenel in order to inspect the state of the bowel, but who can say that sume one of thase necessitice does not exist if the sate lec left entire? 'Tu assure omeself of this is it know a truth; to neglect or to febr doing so is to sacrifice a certanty to a doubt; for who will assert that what the unopened sac concealed did not alone induce the fatel issue, or that what the opened sac revealed was not alone the canse of that issue, which would lave lulluwed whether the sac were left entire or not? While therefore it has yet to be proved that a wonnd of the sac is a source of danger to the surcess of the operation and while, morcover, it would secia that the proufs of that nowhere exist, or are lost to sight in presence of dangers so obvions na to dechre cnuse and effect at once to the weakest comprehension, let ins not inctur the real danger in our avoidance of the suppiosed one. In the latter stiges of the operation for femoral hernin, and indeed for all other

FTGURES OF PLATE XXXVIII

Demonstrations of the Origin and Progress of Femoral Hermia, and of the Opertion, of

Fig. 1. - When we divide tho iline part of the fascin latn transversely from the saphenous opening ontwards oyer the femoral vesecle, E \mathbf{F}, we finul the filleform process, D , to consist of a duplicature of that strasturo in reference to the vesself, ond ro disposed that they are betweon tho folds. The saphenous opening is the ressult of this gilding of the fisciis firin the frout of the vessels to pass under them. Between the retected layer of the ilinc part of the fascin and the pulic purth, which nlso passess huclind the vessels, the saphenous opering is the valvulur interval. This will oxplain that tho saphenous opeaing is a space distinct frono the fermomi sheath. On dividing the femoril sheath in the same manner transversely, wo finil two septa scpanting it into three compurtments of which tho widdlo one is ocelppied by tho vein, \mathbb{E}, tho outer ane hy the artery $\mathbb{F}_{\text {, the }}$ inver oue leing unoecupied. The form of the latter is struck by the filciform process of the fuscia between the folds of which it is. The inner compartment, that between the fulciform folds, is the femoral eanal; and while the parts luive tho dighosition now deseribed, it will be seen that when a hervin descenls the camol, it canant protrude at tho saphenous opexing, ulless by a dilatation or a ruytare of botb the inner wall of the ccunal saphenous opeuing, wiless by a dilatation or
and tho inferior layer of the falciform foll.
Fig. 2. -The feruoral ring, J^{*}, and the twa ingtiunal ringsa, Δ intermal, anil C^{\ddagger} exteroul, are generilly so close togetior, thant froun a point millmans betweon them a ralizs of hanf an inch would towioh their proximal bordors. In the erect posture the plane of each of the inguinal rings is nearly vertical, whilo that of the femoral ring is nourly horizontal, becouse of the femoral arches being in front of, and on a level with, the pectineal ridge of the pubic bone. Encl ring gives, of courso, a corresplouding indtine to thw ueck of tho heminis, which it transmits. The famoral ring is, in nost individuuls, of either sear, nearor to the intermal than to the external imguinal riog, for the first-mentioned part is sumediately on the inner side of tho femoral vein, \mathbf{E}, while the secomil is close above that vesel, the two being zeparated only ly the epigigstic branches f, of the fenoral ressels passing under the
mildilo of the fomerni arch, C, the plane of which is horizontul. Thio acelis of the external minalo of the fomorna arch, C , the plane of which is horizoutul. The neeks of the oxternal
inguinal and the femoral hernias huve corresponding relutious to those vessels Butween thoo inguinal and the femoral hernias lave corresponding relutions to those vessels
ueck of the femoral ring and the exterual inguinal, and concealed hy the faleiform processs, D , tho interval of lwalf an inch, more or less, is ecelypiel hy Ginbbernat's ligament, H, of tbe fomoral arelh, which lies uconty horizontal, forming the floor of the inguianal caual, anil supporting tho spermatio vessels, a. When a hernin has ilescondel through tho fomaral canul, and bent inwards to appear through the saphenows opening, its lody wast be therefore scpmatated from the inguinal canal hy only Gimbernat's ligsment of the femoral archi, and this part, limiting as it dees tho area of the femoral ring, must thereforv weesessarily always constriet tho neck of the heruia; anul in the miensure of ita division in an operation, not only will the neck of a herwin be liberated, but the passage of the protrusion between the ring ond tho saphenous opening will bo rendered noore diract, mull the hernin less bent This cirenustanee will ronder its relluction more ensy. The pusition of Gimbernat ligament, with the hernia outside it, the pulio hede under it, and the sperinatic pasels nbove it, necessitates tho division of it horizontally in warls; anul ns it is the purt which, by its insertion into the pectimeal ridge, gives tension to tho femoral nucl, its division wid be found to render the arch in most instances sufficiently lax for the reduction of the herruia Fig. 3.-In the fenials, the fumoral ring nad eanal huve the same ralntinns to cach otber to the bloolveesels nnd other pasts, is in the wale. The chief featuro in whieh this apertur in the formor sex is sudd to dififer from thant of the latter, is is reqrect to Gimbemnes sigameent, which strincture, II, if usunlly less in transverse donniseter, wia couse the incervalioe westle and the fomoral yein, occupicd by the femoral en unk, J. J*, to bo wider and move possable But it is not generally true that Gimbernat's ligament is less wido in the fewalo fand snoull male; and indeed, cven if it werv true, it must bo obrious that the conilition of that sumso part in tho seses is lint a very nurtaw hasis ufon whiel to foumil genernuin wo firly ascribe the of their greater or less Iinbility ta this hernin. To tho sanue enuse that we firmind cand, at
 different ages, we should useribe the intterencess ns to wilth, dee, of he fequeney of the herrim sexes; anl upou that cause, nlso, mintumily uqpends the is nearly opposite the extermal, ani directly above the femoral ring. As the pelvia widens gradunlly in the advauco to adult ago (ond in the female it widons morn than in the male), the iagminn caunt hecomesounque in both sexes This obliquity, which is itself a prereutiro of inguinul hernin, and which is due to a clange of place, perfornod mether hy the internal thnu tho extermat nugg, (the former being drawn Interally by a leagtheming of the pulic bonc, is nore marked in in (1) die in tho mnle ; and thus necounts, with other facts for tho less frocquenes of ingzumal lemin in tho frume; esox. It is to the greater length of the puhie lione of the fewale, that the in the famile sox. It is to tiog gratso duc, and cossequmenty the grenter liability of this sex to femoral hornia. Thus, while the femalo ingwinal cannl grins su proventive obliquity by thant dovelopruental cause, the femalc fomomil cannl grins iu capneity, nul loses in rogurd to
 inguinad conal of tho female, Allows of the femoral archl, $C_{\text {, as }}$ woll hreing sactly ineised (if requived) obliquely apwards aud iuwarts.
Fig. t.-Tlo nsual thece of election for tho furnantion of a femoral heruin, is detormined by the riag beiug the weakest part; for tho gpree which the fenoral urch spans uxternal to by the riag beiug the weakeecuria; by tho psons nail ilinuis museles; while the alblominal fibrous membrane anilits prolongation, the femmonl shenth, J , elosely culuneo these resects oin their outcer, anterior, and posterior sites, null give seltha hotween them. In whiy inslane

 nttero- posterior dinumbter. The situation of the ring puing lelow the ruot of thire eqignatrio-
 antery, f, and betwecis tue fenoral rein, E, und Gimbernat's ligumanit, E, nuil linving thr

 thins hernia is constrietod, and the usunl difiedte "f relucing it by t.
Fig. b.-When the herriin, K K, mucely proctrules throongh tho fiemoral riny into the

 ns well by
conjoinel.
Fig. 6. The herrin, K K K ${ }^{\circ}$, graddally incressing in size, hecomes tightely impletel in thio
 fo long ns the surrounding strivetures resist its expramion. Nhe iliac fascin linta, of denise
 shenthr resiat it on the outer sido: the adinzter mansales support it veciud, und it canavo

 fiscia lath Tlo saphenn vein, G, joining the femeral vein, mny ulsn contributc to provent its downward adrance. The hervin, thervere, being mable ta dibto its canlul uniformly

 its fascin proprin, the inner wail of the canal, nind in the hatcer anpearing devois of thin

 still invested by the fascia lota ws wheu withiu the femoral caml, for the dexp: fotil of thi filcilornu procoss was u distiuct mewhrane opplovent ta its progress inmands; but this is an anatowieal point of little praetien import. The enhiriforn part of bo sukpricia fiscin sunsking the sapheanus openiug, it mext takes ns its bitb luyer, ant with it the adipey
 mayy he regarded as constrictel in two rituations, viz, at the fomomi ring, and at the rivg

 the lower uillar of the externul inguinal ring. C , und lvoth ronecal © indernnt's ligumint, H .

Figs if and 8 . -The femoral heruin, K°. when fully produced, approsches the exFigs ond 8 -The femonal heruin, K beth when

 in ing inchlyes below the midille of the fenooral wech, -as that its inferior cormu is in a line directly under the firnomil ring aul thus it leads the desenting hernin inmurils

 cesecl will probaily he ont of dhager; forr, ou that sides the fenumal vein anul the not of tho ulugutric artery forlide thy iurision of the strictune ever being maale. What ineter mines the pesition of the oliturator artery in n mpert to the veck of the hurum, in sinijn the position which it hual in regnet to the ring beffro the protrusinnt thringh inio pardy wecurmel. When the olturator is giveu at in

[^7]varictics of the accident, the greatest eaution is yecessary not to wound the howel while the strieture is being divided. 1 have scen this aceident often oecur by the hands of the hest anatomists, for want of forechought ${ }_{3}$ but ehiefly on nceount of the defeetive form of the director eommonly used. That instrument is so nerrow, that when it is passed under the stricture it becones imbedded in the neck of the hernia, the sides of which rising elastic over the instrment ${ }_{1}$ meet each other in fromt of its groove, and thus encomuter the bistomry. This may be prevented hy the part coneented belind it remains uninfluenced hy that precaution, nud is from the same couse still exposed to injury. What I would sngrest. as a more fitting director than any other-eweept the finger ${ }_{1}$ which at the same time that it guides the knife, ean feel the stricture and ginnd the bowel-is a hroad one with recurved horders to suit the form of the ring, and having its groove on its conves side. With sueh an instrument the knife could play free of the howel in making the requisite incision (nlways to be a very short one iu femoral hernia) of the stristuring parts.
(If the operation in respect to other anatomical varietics of femomal hernia, a fow remarks will sufice. The passuges through which they have protruded are gencrally so free that strangulatiou is unfrequent. If it be neeessary to divide a part whieh eauses constriction, the relation which the bowel has to the femoral vessels is to be considered. The particular part of the howel wbich protrudes will when recogmised, determine the nltimate objects of the operatuo. intestine, and strangulated, the stricture is to beved and the howel reduced; bat the former procedure is all that can he nccomplished when the hernin is one of the crecum, the arinary blalder, and in some instances the sigmoid flesure of the eolon; for the two former parts heing but partially invested by reritonxum, never ean have complete saes, and eonsequently, their eellular surfaces beeoning adherent to the tissues in all extra-abdominal situations, render reduction impossible.
The more nsual situation in which h_{1} hesides the inguine-femoral region ${ }_{1}$ a herninl protrusiun n_{1} spontancously arising, manifests itsclf as a suhcutaneons tumour, is at the umbilicus, or some point at the abdominal mediau line. In general a heruis is oecasioned here from a congenital defect of uedian closure e_{1} and in such ease the viscus has but the integrment and condeused cellular membrane for its copsule. In early intincy the abdomen is so eapacious, relative to the pelvis, that the umhilical region overhangs the latter. and is the part consequently towards which the viscern most gravitate. When the umbiliens is not timely and firmly cicatrized nfter the separation of the eord, the weakness of the part is ever afterwards continued hy the viseeral pressure. In the fregnant female, too with the form and relative eapacity of the abdomen and pelvis the same, there is s $_{1}$ from the like canse a tendency to dchiscence at the abdominal median line, and particularly at the umbilicus; and hence the not uncommon occurrence of hernia through this part during and after that state. This hernia has been known to he the consequence of extreme olesity, not of the subentaneous tissues, but of the omenta, the mesenterics, mind other internal parts whicb protrude the front of the abdomen; but in such cases, it may be inferred that tbere was also an origisal weakness of the umbilicus, else why should tbis part withstund so effectually the even greater distension manifested in ascites?

When un umhilical hernis is first formed at adult age the howel is nsually to be found euclosed in a serous sac_{1} extended from the peritonmum; hut when the hernit has hecome inordinately enlarged, its sae in some parts of the periphery mny be wanting, either from having been ruptured or so attenuated that the contained viscus has heeome adherent to the sulcutaneous tissue. The contents of this hernia may be cither the transverse colonn_{1} a part of the ileum m_{1} or a part of the stomach. The passages of mobilical and other forms of ventral hernim are generally so large that those protrusions are readily reducible by the taxis. When one of them is affeeted hy strangulation this $_{1}$ it would appear ${ }_{1}$ is the consequence of a sudden increase of the contents taking place, witlout a corresponding eulargement of the hernial opening. The operation for the relief of such strangulation needs no particular anatomical notice. In whichever direction the incision of the eonstricting part be made no vessel of any importance is liable to he wounded. Whatever he the size of the protrusion, it would seem as if there were no necessity of making the incision of the containing parts so large as to expose the whole of the contents. The neck of the sac enn be readily reached in all cases without such means: wherever it may he judged proper to incise the horder of the herniary opening, ahove, helow or on either side a division of the integuments of an inch long will be found to answer for tbat end. But while the operation may be thus easily performed for the reduction of the hernin'y viscus it is found very difficult to cffect its permanent retention in the abdomen 1_{1} unless ly the constant use of mechanical appliances. This is in consequence of the hermiary aperture heing so large that its elosure does not take place by an approximation and union of its callous borders ${ }_{1}$ wherehy further protrusion might be prevented, hut by a thin layer of cellular sulstance or the like, insufficient to withstand the pressure from within of the howel ${ }_{1}$ which ${ }_{1}$ from having been once herniary ${ }_{1}$ has ever after a tendeney to that occurrence.
The places where a hernia may occur and form no apparent tumour extermally y_{1} even though it be of somewhat large proportions, are the following:- -1 st, hehind the iliac and femoral vessels; $2 n d_{1}$ between the hladder and rectum, or between the uterus and hladder, or the uterus nnd rectum ${ }_{1}$ and pointing towards the perineum; $3 \mathrm{rd}_{1}$ between the hladder and vagina ${ }_{1}$ and protruding into the latter, or deseending aside of it into the labium pudendi i_{1} as in the case of ingninal hernia in the female;-between hoth these latter forms the distinction can he drawn by the alsence or presence of a tumour at the external inguinal ring; 4th ${ }_{1}$ through the obturator foramen n_{1} under the pectineus musele-an occurrenee very remarkable considering the small size of that passagc, and that it is occupied hy the vessels and nerve; 5 th , through the $^{\text {th }}$ iscliatic notch ${ }_{1}$ ahove or helow the pyriformis musele, and overlaid hy the gluteus maximus $\mathrm{i}_{\mathrm{i}} 6$ th $_{1}$ through the diaphragm into the thorax ${ }_{1}$ as n consequence either of congenital deficiency in the musele e_{1} or of a rupture of it from sudden inordinate compression of the viscera hy ahdominal action. While those hernix cannot be detected hy any outward or physical sign and while the symptoms of strangulating obstruction are not different from those attending other pathological conditions s_{1} such ns intus-susception $\& c_{1}$ it is evident that not only are they not amenable to operative measures, hut their existence cannot be ascertained with certainty.

Nok:-In the dascriptions of fermaral heroia by soveral authors some obsenrity proviils, in consuquenes of the sume part luing differently mamed, and difterent parts hasing the oanie numes. The "upirer curnu of the saphenats opening," the "faleiform process" of Burne, and the "femonil liganent" of Hoy, ure mumes ayplied to the same structure Tho portion of sulurticiul fasein which sonsk the saphenots opening, and the innor side of the fewonl cunal, which is pierued by the femorablymplatica and somo small reins, are known as "cribrilormi." The "f femoral arch" is Poupart's ligameut; aul though Ginabernat's ligument is bat n small process of Poupart's, somo are yet ns unnccustomed (from the elaborite distinctivo descriptions of those jurts) to consider them as portions of the ono structurs, as they are to regard the far famed Poupart and Gimburnat as having been ono and tho same indivitiml. The sub-serous disa of cellolar tissue, occluding the femornl ring, in the septun crurale of Choyuet; Lut Mr. Lavrence ("Mreatise on Rupthres") deuies the existonce of had soptum; and well he naty; whiln Sir Astley Cooper, joining it with the sheath of tis femoral canal, culls both the foucia proprias of the hernia, which certainly is the beat way of disposing of the soptuw, for, whether it exist or not, enn master very little nuntumically or surgionlly.
The precise wat of etrieture is n question muels controwerted by authors; bat it is not easy to dotermine after all in what eseontial partieular they differ, or can differ, Becing that tho herninry opening is a ring, aul, as such, must eonstriet hy all ite ares, of whicl one alone (tho inner ono) al mito of being enfely dividel. "Thostrieturv," says Sir Astloy Gooper ("Lectures on Surgery"), "in geatraily in tho nock of the sheath; it is no! situated nt Gimbernatis ligament ; it is newer known tu ho thene; it is at tho crural arch, just where tho intestine lenves the ubdomen. Hersons who think tho atricture is at Gimbernat's ligament aro gresily ignoraut of its real seat." Mr. Lawreneo (op. cit.) remarks, however, thut "my own obsorrations on the sultyect have led we to acfie the canso of utricture to the thin gowterior lowder (Giuberuat's liganuent?) of tho ernall arch, at the fratt where it is connected to the filcifurtio wrosess," This statement agreos with thio experience of Fey (" Pristionl Obsurvations"), and with that of Liston, though differently expressed in his
"Opcrative Surgery;" while Mr. Forguason ("Prnotical Surgery") considers the seat of stricture is "almost insariably to be found in the crural ring;" that Gimbernat's ligament "is not raoro the seat of stricture than auy other part of the ring." With this Inter view of the fact, all who consider the form of the herninry oneniug must agree; but yet it cannot renler Gimbernat's ligament less moljeet ot particular interest in tho operation, for this is tho only part of the riug which, with a safo and the required effect, can bo incised. In the following observation there is also mach truth: "The sent of stricture is not the same in all cases, though, in by for the greater nurnber of instances, the constriction is rolieved by the division upwords and inwands of the falciform process of tho fascin lata and the lunated edge of Gimbernat's liganont, whero they join with each other. In sowe instances it will be the filbes of the deep crescentie (femoral) arch; in others, agnin, the neck of the sac issolf, and produced by n thickening and contraction of tho sub-scrous and peritonenl memlianes, where they lio within the circumference of tho crural ring."Morton, "Surgical Austomy of the Groin," p. 148.
Regarding the fact of the obturator artery heing exposed to injury in dividing the stricture, when that vessel is a limach of the epigastrie, anatomists have not been sparing of their olservations. Of the relative frequency of this origin of the obturutor, Ml. Velpenil (" Midecine Opératoire") remarks, "L'examen que j'ai pu en fuive sur plusieurs milliers do callusres, ne mo permat jas de diro quelle so reacontro une fois sur trois, ni sur cinq, ni mémo sur dix, anis bien seulement sur quiwza à vingt." Monre ("Observations on Orwml Freruin") states this condition of the artory to he ne ono in from twenty to thirty cases; Mr. Quain ("Avatoray of the Artories"), that the proportion is as one in three and E half, which estimate agreus with that of Cloquet aud Hessellach. Sir A. Cooper never heving tuet will nn instance (in practice) of the vessel being on the inncr side of tho neek of the hernial sac, must elow that this position of it is very rare "What determines the position of the olthinator artery with respect to the fenomal ring f" is a question adranced by anntomiste, but for tho answer we need not Bcarch within the throchold of philosoply.

COMMENTARY ON PLATES XXXIX. XL. \& XLI.

THE FORM OF THE PELVIS AND THE RELATIVE ANATOMY OF ITS VISCERA AND BLOODTESSELS, \&e. MECHANISM OF THE PELVIC APPARATUS IN REFERENCE TO lIS CONTALNED ORGANS

Tne pelvic segment of the body is composed of two sides, enel? of which is of so singular a shape that the most profound geometrician (if he had never seen the part) could form no true idea of it, however closely it wha described; nor could he limself (taking it in hand) give it a name according to its likeness to any other figure-square, spherical, elliptical rhomhoid, or trapezoid; for it is a componnd not only of them, but of all their modifications. This is the innominate bone, so ealled as defying description or definition:-a form of notches, foramina, crests, spines, tuberosities, and processes-an indecipherable enigma, considered per se. Yet this form is an example, when viewed in natural apposition with its counterpart, of how things of the most bizarre character conform, ns sides, to represent a perfectly symmetrical whole. One immominate bone is exactly like the opposite one; and the pelvis, consisting of the two, exhibits complete symmetry; und is thms far intelligible. But, except for hilateral symmetry, the pelvis itself is a form indefinalbe: its name does not accord with it any more tban the name ring suits the sphere. While, therefore, it is in vain that we look for a form, extraneous to the body, with which to compare the pelvis, so as to understand its signifieation and its mechanism, we have only to seek for it within the body, and compare Nature with herself.

When the abdomen is eviscerated, so as to expose the pelvic organs, I am at once struck with the fact that, through the groin to the thigh, as through the axilla to the arm, the principal hloodvessels and nerves are transmitted in a very similar manner. In the one place the main vessela, nominally divisible into axillary and brachinl-and in the other into iliac and femoral, are continuons from their points of origin in the aorta to their termination in the limbs. Considering them in their continuity, we not only avoid the disadpantage (in a practieal light) of trenting any one part of thein irrespective of the others (for facts of chief surgieal importance may be overlooked in consequenee of artificial boundaries obscuring them), but we discover them, under comparison, to be as clues leading to the true meaning of the two apparatuses with, which they are respectively in connexion. In recognising the sum of the uniformity of the shoulder and pelvic apparatus, we at the same time identify the sum of the difference between hoth; and we note their differential features to he the result of a very simple modification of originally identical parts. In that modification the existing design reflects itself; description gains an increasing interest; and forms, hitherto mintelligible in the hands of tbe mere descriptive anatomist, nad henee nameless for or misnamed by him, manifest to us their true signitication, withont knowing which we eannot understand aright and fully either the law of their ereation or the meclanism of their combination.

The pelvis is as elosely rclated to the abdomen as this is to the thorax. The two latter cannot be contemplated irrespective of each other, for their parts are common to the two, and their functions are correla. tive-mutually dependent. This natomical and functional correlation is epen more apparent between the pelvis and abdomen, for they are not separated even by a diaphragm. When we would ascertain the meauing and use of ans part of the body, we mist seek for them in its relative position. The thorax is superior to the abdomen, to act upon this compartment: the abdomen is superior to the pelvis, to suhject this to its aetion: and consequently the action of the thorax is transmitted throngh the ahdo. men to the pelvis. The three compartments constitute the trunk; and therefore it is in their comnexion and their relative position that we are
to discover the signification of each. As between contiguous parts it is their apposition whieh gives them their meaning, so hetween remote Part = it is in their serial and their symmetrical positing that their meaning is expressed. The vertelaral column is common to the thorax, aldonen, and pelvis; and, notwithstanding the modification apparent between the forms of the several classes of the vertebre, their serial arrangement indicates their common similitude. As with fhe units of the verteliral column in the posterior median line, so with those of the sternum in the anterior median line produced by the linea alla, through the aldomen to the pubie symphysis; and so likewise with the costal mits laterally, figured serially in the abdomen by the linex transrerse, and succeeded in that order lyy the pubic and ischiadie bones. Comparing, then, the three emmpartments in respect to the components of ench, we see that their symmetry depends upon the parts of one side of ench teing identien with and opposite to the parts of the other side; hut besides symmetry, they invite us to another mode of comparison, that of series, in which they exptess a fuller meaning. In the thorax we notice the sterno-costo-vertebral circles, complete above and ineomplete below, and according to the quantitive difference of those circles we see the lorm of the thorax to be struck, and that upon that form its function as a respiratory apparatus depends. In the ablomen we notice the costosternal pieces to he absent as bone, lut present as filbons parts; while the vertehral elentents alone persist as bone, and eompared with the thorax we see the difference between hoth, and that the abdomen is functional by reason of the absence of the costo-sternal pieces: but still, in idea we cannot but encircle aldominal space as costal, for in fact the parts which are :llsent as bone here, are tbe sane as the parts which are present as bone clsewhere; and so the camse and manner of the design of ahdominal form must be evidently in the subtraction of those parts, even if that form did not appear, in certain of the lower animalo, still costal, like a thorax. It is by this serial comparison that the pelvis reveals its signification, the lav of its formation, and the peculianty of its construction.

The elemental parts of which the pelvis is formed arrange themselves into three groups as naturally differing from each orler (though they be imited) as the sternal, the costal, and the vertebral clements appear. Front the sacrum, posterior and central, the two ossa imnominata arch laterally, and meet to form the pubic symplysis, anterior and central; but though each of the latter bones appears at adnlt age one and indivisible normally, it is not the less to be regarded as a componnd bone, than is the form composed of the sacrum and it, united abnormally by anchylosis. The sacral elements are n group in series with and homologous to the vertebral elements, and to no other: the pubie and ischiadic pieces (semarable from the iliac bone in early life) are in series with the anterior costal pieces of the thorax, and are identical with these, and with no otber than these. The bace loone is not in matural scries with any of the thoracic pieces; camnot be likened to any one of them; and is therefore a totally different part from any other appearing in eithev the thorax or the abromen. The tone homologue of the ilinn is cvidently the scapula; and to see this we have to separate the ilinm from the sacrum, the ischium, and the pubic bone, wben now the ilim and stapule will be found to correspond not ouly in general form, but in their mode of development; the relation which their respective groups of muscles have to them; and also as regards tbe neighbouring ressels and nerves.

flgures of plate xixid.

[^8]When 1 plaee the ilimm rud the seapula of the same side together, so that their corresponding parts are in apposition, they resemble each other as well in their gencral figure as by their surfaces, borders, notelies, angles, and procesaes. The posterior border or base of the scapula cor responds, then, with the upper border or crest of the ilium; and we know thut both prirts are developed from distinct centres, forming epiphyses, which aftermarls coalesee with the hody of the bone. The anterior superior spinous process of the ilium represents then the posterior superior angle of the scapula, neither of which parts is formed of a sepuate primary piece. The remaining parts of the two boues also correspond: the posterior iuferior angle of the scapula hoing developed from a distinct nuelens, like the posterior spinous process of the ilium, which joins the sacrum, represent each other: the coracoid process of the scapula answers to the anterior inferior spinons process of the ilium, both those parts being developed from separate centres of ossification: the superior and inferior eoster of the scapula are not developed as separate horices of that bone, neither are the corresponding anterior and pusterior borders of the iliun separately develnged. In no part of the ilium, however, docs there appear a process corresponding to the spine and acromion of the scapula; hut this eannot despoil the two bones of their amalory, else a scapula is not a scapula among the lower sprecies of nimals, while we find it in one species with that process and spine, and in another without either. Sufficient, then, being the sameness of both bones to induce us to eompare them, and regard then as homolognes, we can at once, while riewing then in their matural respective positions, define, so far, the differenee between the shoulder and the pelvic appratus: the ilium is intercalated between the saerum inchind, and the pubie and iseliadie bones in front; and, according to the space which it ocenpies between those bones, are the ribs annililated, as being useless. In this position, regarding the ilium comparatively with the scapula, and calling the same parts of each by the same name, we see the hase (crest) turned upward, as the hip; the superior costa (anterinr iliae border) turned forward, forming, with the os pubis, the ilio-prlie notch, spanued by the femoral arch; the inferior costa (posterior ibac horder), turned backward, forming the scintie noteh; the glenoid fossin (acetabular facet), turned downwards vertienlly on the head of the frmur; while the posterior inferior angle (posterior iliac spinous process) hecomes applied to the saerum as the saero-sciatie junction. Thas the difference between a seapula and an ilium is ehiefly owing to tleir position and mode of eomexion with other bones, and as a consequence they, in forming their junctions with the neighhouring hones, render the shoulder and pelvic apparatuses what they are as specialties. The seapula is movable on the thoraeie ribs between the dorsal vertebrse and sternum, and is horne outwards by the eostiform elavicle, with which it artieulates; the ilium, having a position inverted, compared with the scupula, is fixed between the vertebral saerum and the costiform pubie and ischiadie bones, and separates those elements which are naturaily related as segments of eosto vertebral eireles; the phace of those costal parts which would have connected them being ocenpied by the ilium. That this is the signification of the mode in which the pelvis is constructed-as a hasis of union between the trunk and lower extrenities for locomotion-us a basis ol support to the abdominal viscera, and as a recipient for its own-is further indicated by the relative poostion of its muscles, and the distribution of its ressels and nerves.

The riseeral surface of the ilium (venter of the senpula) has resting upon it the iliacns mnscle. This anuscle resembles the sulseapularis in form, position, and attaclments. The iliscus arises from the inner margin of the crest of the ilium, and from the whole ventral surface of that hone; and the filues of it converging towards the outer part of the ilio-pulbie notch, traverse this place, and thence turn baekwards and downwards to be inserted iuto the lesser trochnnter on the inner side of the head of the femur. The subseapularis arising in the same way from nearly the whole of the venter of the scapula, appears witb its fibres converging towards the inner side of the head of the humerus, and becones inserted into the lesser tulberosity of that hone. The psons musele appears as the comiterpart of the teres major by its place and attachneuts. The $p^{\text {ssonss }}$, in addition to its origin from the sides of the lumbar vertelure, has one also from the posterior spinons proeess of the iliun, and, between the latter point and the ilio-pmbic noteh, it bes along the posterior inargin (brim of the pelvis) of the iliae bone, and sidelong with the lower border of the iliacus; and its fibres ending in a tendon coumon to the two muscles have the same point of insertion-the lesser trochanter of the femur. The tercs major arises from the posterior inferior angle of the scapula, lies along the inferior costa of that bone, and is inserted into the hnmerus close to its lesser tuberosity. But the psons and iliacus nuscles ure covered by the peritonaum, while the thorace
ribs separate the subscapularis and teres major from the plenra; this difference is, however, to be secounted for in the foregoing remarks upon the lace that the ilinc bone takes the place of those costal parts which wonh otherwise have joined the costiform os pubis and ischium with the lateral masses of the sicral vertebre (those masses heing evidently the stunted analogues of ribs which form with the ilium the sacro-iliac junetion), and thus comes, with the muscles on its venter, into apposition with the abdo. minal serous membrane. When we compare the muscles on the dorsum of the ilinan with those on the dorsum of the scapula, their analogy, in respect to relative position, number, and attacbinents, is also evident. The glutens maximns arises from the posterior third of the erista ilii, and is inserted into the great trochanter of the femur just as the infra-spinatus muscle of the scapula arises from the lower half of the base and dorsum of that bone, and is inserted into the greater tuberosity of the himerus. The gluteus medius arises from the middle and anterior parts of the crest and dorsum of the iline bone, anl is inserted into the great trocbonter of the femur in the same manner as the supra-spinatus musele of the scapula arises from the upper half of the bese aul dorsal surface of that bone, and is inserted into the great tuberosity of the humerus. The glutens minimus muscle arises from the dorsal surfaee of the ilium above the neetabulum, and is inserted as the other gintei; and so is the teres minor muscle, arising from the dorsal surface of the scapula, near the glenoid fossa, inserted with the supra and infra-spinati. Between thnse dorsal muscles of the ilium and those of the seapula, the principaldifferenee is owing to the absenee of a part on the former bone whieh would eorrespond to the spine and acromial proecss of the latter. On the scapula, this proeess serves, with other uses, to separate the museles; on the ilium, its absenee eauses them to come into eontaet, and necessarily to overlie each other in some degree. The analogy between the reetus femoris, arising by one head from the anterior inferior iliae spinous process, anl by another from the upper margin of the neetabulum-and the bieeps humeri, arising from the eoracoid process by one had, and from the upper margin of the glenoid fossa hy another, completes what it is neessary to remark in demonstration of the eorreetness of the present views so far as regards the muscles.

The bloodressels traversing the iliae region to the thigh, correspond with those traversing the root of the neek aml axilla to the arm, in their general relations; and in the manner in whieh they distribute their branehes in referenee to the bones, they tell of the eorresponding parts of these as above-mentioned. The abdominal aorta, on the body of the fourth lumbar vertelira, on a level witb the navel in front, and the highest parts of the eristre iliorum laterally, bifureates into the two iliae branehes symmetrieally; aml these diverge from eaeb other in their passage to the middle of ench groin, and are thence produeed in the same direction to the middle of each thigh. In this course each vessel may be regarded as a main trunk, giving off at intervals lnrge branehes for the supply of the pelvie organs, the ahdominal parietes, and the thigh. As the axillary artery is direeted towards the head of the hmmerus, so the ibine artery takes the direetion of the head of the femur. Between its point of origin in the norta and the saero-iliae junction, where it gives oft its internal diac braneh, the main artery (eorresponling with the innominate) is named common iliac-a part of the vessel whieh is very varisble as to its length, however, but which is stated to be usually ahout two inebes. On traeing the internal iliae artery into the pelvis, the first branel of this vessel will be observed to pass outwards through the greater seiatie noteh, and to wind over the dorsum ilii between the gluteus medius and minimus muscles, in the direetion of the bip joint; this braneh, (the gluteal,) has a course similar to a hraneh of the subscapular artery, whieh ramifies on the dorsum seapula, beneath the museles eovering that part of the bone. The other branehes of the internal iline are arranged like the thoraeie branehes of the axillary artery. From the origin of the internal iline branch to the plaee where the main artery emerges to the thigh, beneutl the femoral arel, the vessel (eorresponding with the axillary) is named external iliac. This portion of the vessel follows the inner margin of the psoas muscle, overlapping the brim of the pelvis, and in geneml gives oif no important branches exeept at its lower end, where the epigastrie and the eircumflex ilise arise from it, and course as their names indieate. Their origins from the parent vessel are not unfrequently as high as its middle, in which ease the surgieal length of it may be regarded as short. When the external iliae artery beeomes femoral (as the axillary artery beeomes brachiul), it gives off the profundus braneh to supply the miseles and other parts of the thigh. This branch generally arises at about an inch aml a lailf or two inches below the fold of the groin, and between it and the epigastrie branel above, the main artery is named common femorel, Below the profundus hranch, as far as the popliteal spaee, the femoral

arery appears as an undivided trunk ${ }_{1}$ heing destined to supply the leg. In this course the artery is accompnnied by the vein, which is nogo ideally subdivided according to the region it traverses. The external iliae artery y_{1} with its femoral prolongation, has the accompanying vein on its inner side. Above the femoral arch hoth vessels are invested hy the peritonxum, and under the small intestine; they are also bound in their place by a thin process of the iline fascia, and some lymplantic hodies bere overlie them. The urcter ${ }_{1}$ desconding on the psons muscle c_{1} passes over the origin of the external iline vessels to the hladder in the pelvis; while the spermatic artery and vein, with the genitocrural nerve, also descending on that muscle outside the iliac vessels as far as the femoral arch here pass inwards over them to loop around the epigastrie artery, in doing whieh they are joined by the vas deferens s rising 2 at the side of the bladder from the pelvis, and witb this duct enter the ingumal eanal through the internal inguinal ring. The profundus hranch of the femoral artery is the representative of the superior profundus branch of the bracbial artery, the position of the former in respect to the head of the femur and its mode of distrihution in the thigh, bcing similar to that of the latter in respect to the bead of the humerus and its distrihution in the arm. Below the profundus braneh of the femoral arters; this vessel like the braehin, is a main trunk ns far as the next joint.

The elemental parts of the pelvie apparatus having heen now naticed as similar to those existing elsewhere in the hody, and the analog.) hetween the parts of it and those of the shoulder apparatus being fully discernible e_{1} the difference as to the form of botlo apparntuses gives the difference ns to the design and uses wbieh they respectively serve, ln the form of the pelvis, however deseribed, we can mark its adaptation to its uses; but while we know that that particular form results by a special mode of coaptation of its parts, which parts are represented elsewhere in a somewhat different relation to each other, and yield a different design at the sume time that analogy is tracenhle between the parts of both, and between both as entireties, then not only can we rend the design of each h_{1} but we ean trace the manipulation, as it were, of an artificer, Considering the pelvis under this point of view w_{1} we acknowledge the uses of its notches, foramina, processes, \&c.; hut while we know that these must of necessity result is a consequence of the existing comptation of elemental parts, eaeh of which has a definite slape, and cannot assume that of any otber or yield a pelvis of any other kind of conformation than what it presents, any more than can nultiforms crystals arranged in a eertain fixed relation to each other r_{1}-then, in indition to appreciating its design we have the interest of analysing its form as thus: 1st. The pelvis appears as an asscous cincture appended to the sacral part of the vertehral column, and eneircling space like a thoras. Between the sterno-costo-vertebral thoracie series and the pelvis a hintus in regard to osseous stermum and rilis oceurs; and that hintus is the abdomen. The absence of ribs and stemum is essentinl to abdominal form; and upon this also depends the capalility of the truak to perform its various flexures hy means of the lumber spine, which allows the pelvis to alter its axis in regard to or to render it coincident with 1_{1} those of the thorax and ahdomen. 2nd. Viewed in fromt the vertieal measurement of the pelvis is much less here than laterally or posteriorly, for the same purpose. In the median line in front appears the pmic sympliysis or junetion of the pubie bones, meeting liketwo of the sternal ribs, with whiel they are in senfes, and placed, like these, horizontally. Bulow the puhie synphysis as a necessary result of that form, appears an arehed space for the genito-urinary passages, and bounded on either side by the aseending rami of the ischiadic hones joining the pubic, and resembling that space whieh intervencs between the eighth and niuth pairs of opposite rihs below the stermm. 3rul. On either side of the pubie symplysis, and hetween the rami of the pubic and ischindic hones, appents an interval-the thyroid aperture, like the interval bet ween two sternal ribs and in the same manner ocenpied hy two layers of muscular and ligamentous strueture, and transmitting an artery and nerve, whiel, as they are in series with the intercostal artenes and nerves, signify
thant the aperture is as if intercostal. 4th. Immediately external to the thyroid aperture is the acetahulum formed by the junction of the
articnlar end of the ilium with the pulsie and ischiadic bones, ans seeming as if a suapula united its alenoid fircet by nueloylosis vith th: outer ends of two sterminl ribs; in which case the shoulder apparatus wonld lose in needful mobility as much as the pelvic apparatus woula lose in ncedful fixity, if its parts assumed n mode of comexion like that of the shoulder-hones as normally nppearing. 5th. Below the acetabulum appears the tuber ischii, which, with its fellow of the opposite side, bounds the pelvic outlet iatcrally, each tulier seeming tu me to be the result of a lend in the costiform ischimm, of which the posterior part turns uprards to join the il:um in the acetalmhm, while the anterior part fornes a side of the pubic arch; and from that. bend the bone (quod sustinent sedentem) deriv.'s its name, and the interval lietreen it and the os pubis is thyroid. hith. From the acetabulum of each side rises the iliar bone, placed, ns lefore notived like a senpula, with its hase (crest) upwards, joining the lateral ruasses of the snerum ly its posterior angle, and occasioning therely the sacro-sciatic intervil, as hetween the inferior costa of a scapula and the vertelres. It as happens by this position that the strongest part of the ilimm (the triangular prisinatic columu, the correspon ling purt to which, in the seapula is also the strongest and prisuntic) is that by wheh it almits against the sacrum; and thus the bone is enabled to resist more effectually the shoeks transnitted through it by the superinembent weight to the supporting head of the femur. The iliae hone-t, placel thas at right angles to the horizontal pulvie rami, oceasion that wile depression in the pelvic tront, whielh, linited above by a transerse line drawn from the anterior suplerior iliac spinnus process of one side to the other, includes the inguinal and hyprogastrie regions. Among other uses of this position of the ossa iliti, two are most obvious, namely, that of serviug as an cffective lever tir muscular action, and as a. resisting floor for the movalule abdominal organs which ${ }_{1}$ under pressure $_{1}$ tend to glide from its incline and concentrate the force in vefereuee to the pelvic viscera. 7th. Occupying the middle line, and forming the posterior wall of the pelvis ${ }_{1}$ is the sacrum, a formes evideatly of vertebral character, and consisting of fire (less or more) vertchrae, auchylosed so as to answer as a solid wedge between the ilin, and as a transmitter of gravitating force. Considering the sacruu ns composed of vertebre, it represents in shape a deceasing serics of those bones, that is to say a quantitive degradntion of them, like $9,8.5,6,5,4,3,2,1$; nud thus, it appears, terminuting in a quesi-candal appeudage, converted in the luman form to other uses than those of the eorresponding part in the lower specics of nuimals. The sucro-cocergeal torn is ultugether pelvic in man. From each ol' its lateral horders arise tro strman land of ligament, one of whicb is attached to the spine of the isclinum, and the other to the tuberosity of that bone, and the two dividing the sacro. sciatic interval into two spares of unequal areas, -riz., the superior greater and the inferior lesser sacro-scintic foramen, are evidently intended to maintais the forward curve of the sacro-coccygeal form where, tupering it hecones weakened. While thus, by its comparison with the shoulder apparatus, we reveal the signification of the polvis, of its asperities, its prominences, its interosecal intervals, and its general form, we are the better enabled to estimate its mechanical design as equally litting for its sereral uses. On this subject it remains to add a ferw olservations to those already given.
In the crect posture, the pelvis is so situated in reference to the abdomen, that while the axis of the latter is vertical hetween the middle of the diaphragin and the puhic symphysis, that of the former is oblique between the umbilicus in front and the point of the coceyx behiud and below. Both axes, thereforc, cross in the abdomen, behind the hylogastrium, but by the anterior flexure of the lumbar spine they nur be made to contrespond ${ }_{1}$ aud this is the nttitude naturully assumed for giving eftect to ahdominal action in reference to the pelvic organs. The pelvis has two axces, of which one would the represented by a perpendieidor passing throngh the centre of the plane of its brim or inlet, and produced backwarls and downwards to the poins of the cocegs, while the other would be indicated by a right line passing from the middle of the sacrum through the middle of the lower third of the pubie arch. Both the pelsic axes uay be ssid, there.

FIGURES OF PLATE XL.

Sphincter aui mascle. - 3, 3, Oluted artory and nerre.- 1 , Sciatic artery.-5, Pudic sphery, - , Superticial perineen nitery, $-i$, Dursal artery of peuis, and artery of ita criteS, Lrever of the bulb,-2. Vis deferenas.

 - ponch of peritouequa.-J, Pmatate ghad suspealod by auterior true ligauents.- K ,
 Remsies of hypegastic artery, - 33 , Vesical arteries-999, Vas ucferelis.

Fig, 1.-A, Miac anterior snpcrior spisous process $-B$, Spiwous process of pultus- C,

 -K. Gluteus miniunus inusde, sini-L,

fore, to eross at the centre of the pelvic eavity. In respect to the pelvis in all its positions, its two axes may be considered as multerable; but in rearard to that of the abdomen, they may vary according to form Aexure of the lumbar spine. The brim of the pelvis approaches in form that of a circle. All its diameters are less than those of the pelvie envity; but the greatest differenee between the two parts is observable in the antero-posterior measurement, and this is owing to the convex or buckward curve of the sacrum. By the form of the snerum the pelvis guins capacity as a recipient for its organs; and the curve of that hone, contimed forwarls and downwards by the cowera, has eridently a reference to the pulic arch, which latter, while the perinenm remains as in the matural state, represcuts the only polvic ontlet that maturally exists; and, as such, we find the genitourinary orifiees occupying its axis, while the nasal orifiee appears at its hase, midway betweell the tuberosities of the ischia. With receard to the sexual peeuliarities of the pulwis, it necds only to be olserved here generally, that the female pelvis is of rulatively greater proportions in all its horizontal measurcments, nul of lesser proportions in its vertical mensurements than those of the male, showing, in the conformation of the former, a provisiou for caseful parturition.

The relntive anatony of the pulvie organs is easy to be learnt, they are so few in oumber. The minary bladder (in the adult) occupies the "true" pelsis when the organ is collapsed or only partially distended. It is, then, sitnated immediately behind the pubes and sub-pubic spree, and (in the male) has the rectum descending close behind i, and taking the eurve of the sacrmm. Latorally; the bladder is in eontact witht the sides of the pelvic cavity; and inferiolly, it reste on the lower third of the reetmon, and upon a movalle floor, formed by the levator ani muscle, which is convave to receive it. The bladder varies murch in shape, according to whether it be empty, semi-distended, or full; and its relations to ueighbouring parts, especially to those in connexion with its summit, vary also considerably. When empty, the back and upper part of tbe organ are collnpsed against its forepart, and in this state it lies flatened med corrugated against the front wall of the pelvis, and with the small intestine deseunded after it. Whether distended or collapsed, the small intestines lie upon its npper surface, and behind this part, and constantly compress it in the ruanner of a soft elastic cushion, especially in the erect posture. When largely distended its summit is raised for an inch or two above the level of the symplysis pubis; and the small intestines then having gielded place to it, we can distinctly feel it at the lyprogastrinm. This is the situation whicb it occupies in the feetus, with its poiuted summit immediately behind the umbilicus, and thence it gradually sinks into the pelvis in the advance of age, and according to the development and inereasing capacity of this recipient.
In share, the bladder varics in different individuals. In some it is roundel, in others pyriform, in others peaked remarkably at its summit. In curacity, it varies also considerably at diffcrent ages and in different sexes. In tbe nged it is relatively more capacions than in the young, but this is principally owing to some canse of obstruction in the urimary prassages an culargeneut of the prostate, so common in advaued life. The greater relutive width of the female pelvis than of the male implies a greater relative capacity of the feumele bladder. When distended, its long axis (in the adult) will be found to agrce with :1 perpendicular to the plane of the brim of the pelvis-with a line passing from the navel to the point of the eoccys, the obliquity of the organ being greatest in the erect posture, for then the intestines gravitute upon its upper back bart. But when the body is recumbent, the bladder recedes somewhat from the pubes; and as the intestines do not now pross upon it from nloove, it allows of being distended to a much greater degree wihout causing uneasiness and a deaire to void its contents. The mumer in which the organ is comected to neighbouring parts is such as to admit of its frec distension. Its summit, back, and the upper parts of its sides are free, and covered by the elastic peritonaum, whilst its front, its hase, and the lower parts of its sides are adherent to the acljacent pelvic walls, and divested of the serous membrane. This will be best seen by renoving the os imnominatum, togetber witb the lateral lulf of the levator ani muscle, which iutervenes between the ischiadic part of thut bone to which it is attached and the side of the bladder.

The pelvic organs being now exposel haterally, we find, on tracing the peritonkem from the hypogastrium to the point of its reflexion (iunnediately above the pubie syuphysis) over the summit of the bladder, that membrane to be so lonsely adherent to the organ, that this, when being fully distended, can raise the peritonaum somewhat above the mper murgin of the pubie symphysis, and that in this state the bladder admits of being punctured here without wonnding the serons sac.
When the bladder is cullapsed, the peritonmm fullows its smmint below
the level of the upper margin of the pubes, and in this eondition such an operation could not safely be performed; but now that proeeeding cannot be requircd. After investing the upper part of the bladder, the peritoneum deseends, adhering to its posterior surfaee as low as its lonse, and here becomes reflected from it backwards to the forepart of the rectim, bracing this organ to the sacrum. This duplieature of the serons membrame is the recto-vesieal pouch, and it is required to note the level to which it descends, so as to avoid wounding it in the operation of puncturing the bladder through the reetun. The poueh passes lower in some bodies thrn in others, but always there exists a space of greater or less dimensions between it and the prostate, whereat the base of the bladder is directly adherent to the rectum. When we trace the peritonseum from one iliae fossa to the other, we find it behind the bladder, forming the sides of the recto vesical pouch; lut on tracing it over the summit of the bladder, it is scen to be reflected to this organ immediately below the pelvic brim, muder the external iliac vessels. At the situations where the membrane is reflected, in front, latcrally, and belind, to the bladder, it is thrown into folds named the "false ligaments" of that organ. Under the peritonrum, the pelvic fascin (whie) is an extension of the transversalis faseia) is refleeted from the parictes to the bladder in a similar way, but at a lower level than the peritonomm; and, being thrown into similar folds, forms for the organ in front, laterally, and belind, the "trac ligaments." In addition to those ligaments whieb serve to keep the base and front of the bladder fised to the pelvis, other struetures (the ureters descending from the limbar regions to enter the side of the organ near the prostate, the vasi deferentia descending from the internal inguinal ring to enter it at the base of the prostate, and the hypogastric cords and boodvessels passing from the internal iliac vessels bchind, along the side of it, to their respective destinations) embrace it in various directions, and act as bridles, limiting its expansion more or less at all points, but least so towards its summit, which is always comparatively free. The neek and outlet of the bladder are situated at the anterior part of its base, and point midway at the sub-pubic space. The prostate gland surrounds its neck, and rests on the forepart of the lower end of the rectum, where, being of a rounded form and dense structure, it can be felt throngh the bowel. Those parts shall be more fully noticed hereafter.

The rectum, occupring the posterior middle line of the pelvis, is (in tbe male) between the bladder and the sacrum, and conforms with the curve of that bone by its middle and upper parts, which are invested by the peritonaum. The lower third of the bowel, not being covered by that membrane, is the part on which surgical operations can be performed. When the bladder is largely distended, it compresses, by its convex posterior side, the rectum against the sacrum, and canses the curve of the bowel to be grenter than when the bladder is empty. This fact requires to be borne in mind when it becomes necessary to pass instruments or injections into the bowel, for this organ will receive them with more freedom if the bladder have been previously evacuated. The coccyx, continuing forwards the curve of the sacrum, bears the lower part of the rectum against the posterior half of the base of the bledder, and gives to this part a degree of obliquity uprrards and backwards in respect to the perinaum and anus, which circumstance should be remembered in the operation of lithotomy. From the point where the base of the prostate lies in contact with the rectum, this latter curves downwards and slightly backwards, and terminates in the anus midway between the tuberosities of the ischin. The prostate is placed at about an inch and a half (in some two inches) higher than the anus, and anterior to it; but this measurement varies according to whether the bladder and bowel be distended or not, and also especially according to whether the prostate be enlarged or not.
The bloodvessels of the pelvic organs are derived principally from the internal iliac artery, which descends into the pelvis from its origin in the common iliac at the sacro-iliac junction; their nerves are from the hypogastric plexns of the sympathetic system. The rectum is chicfly supplied by the inferior mesenteric artery, which, arising from the forepart of the aorta above its bifureation, branches upwards in the left meso-eolon, and gives downwards a large branch to the rectum, ramilying on this organ as fur as the anus. The first branch of the internal iliae is the gluteal artery, which, passing (with the gluteal nerve derived from the sacral plexus of the cerebro-spinal system) through the great sciatic foranen, between the bone and the pyriformis inuscle, turns upwards on the dorsum of the ilium, and ramifies to the muscles there situated. The seoond branch is the obturator artery, whish (accompanied by the obturator nerve fiom the sacral plexus) passes along the side of the pelvis a little below its lrim, and is trmsmitted through the outer angle of the obturator formmen to the adductor muscles of the thigh.

The thind branch is the remains of the hypogastric artery, which pervious still for ahout an inch from its origin , gives off two or neore of 2 the small vesical arterics ramifying on the side of the bladder. The fourth branch is the sciatic artery, transmitted (with its accompanying nerve from the sacral plexus) through the great sciatic foramen, below the pyriformis, to the upper and back part of the thigh. The fifth is the
pudic artery, appeating as the continuation uf the internal iliac, and passing through the greater sciatic furamen, below the pyrifismis, with the pudic nerve, derived also from the sucral plexus, winds with it around the spine of the ischium, and re-enters the pelvis by the small seiatic foramen, where the two, beconsing lraced to the inner surface of
the ischum (abont an iuch and a halr above its tuberosity) hy a dense

FIGURES OF PLATE XLI

Demonstrations of the Retative Anatomy of the Base of the Mulo Bladder, the Urethra, and itso other . $1 / p$ pendayges.

Fig. 1 represents the normal relations of the more important parts in connoxion with

 necording to that linc, it would equally biscot cach of those parts. These severul structures are situateil at different depths frou the perinneal sunfice aul liave therofore differente relations to the base of the bladder. The bulb of tho areethra is iumedintely in front of the anus, and both parts are comparatively buperficinl. The prostate is hetween them, and on a plane deepere than thoy, whilo the hase of tbo hilader is still more degply phood than tho prostate; and hence it is that tho end of the rectum is ulowed to advace so nans tho peadent bulb that those parts are in a great measure concesilel by theses. As the apoce of the prostate is an inch (more or less il ceper than the bulk, so the direction of that prortion of the uretbra whieh intervenes between the two is accorrling to the axis of the pelvic outlet-the prostatie ead of the canal being deeper than the part neas the luyllThis fret has its practical ignificuuce in lithotomy aud catheterifm. Viewing the course of tho pudie artexies in referenee to tho mediun line, wo sce that they are removel livon it at a wider intervai helind than befere; and that where they first enter the perincul space widing around the epines of the ischin, thoy are muol deepre (on the sanc plane as thint of the base of tho bladder) thas they are whero they alpprouch the luilh, of the urothrs. Throughout thicir periuenl course the puldio arteries are separated from tho bladider and the rectum by tho levator ani nusele nanl hy the deop perinenal fission betwecn the two layers of which they are ceclosel. While the median line muturlify marks tho ferinreal spuce into lateral halves, in both of which aro to be found ideutical parts, it is only hy ani imagimary line drawn tranaversely from one tuher iscliii to tho otber that the polvie outlet can bo divided into an anterior and postorior space. The line B, drawn tivm the posterior border of one tuber to that of the otier, outs the median lino at right angles whore it crosses tho midullo of the auns. In the anterior of those equees appear all the parts now notied; iuto it the bludder and bowel open, us being the pesvie untiet, and to its axis all tho lines of abdomiual fores tend to render those orgmss operative.
Fig. 2.- While tho medinn line, \mathbf{A}, divides the pelvic outlet into lateral sprees, and the tranaserse lino, B , divido sit into nn anturior aud a pusterior apnee, we buve isolated a triangular interval ou oither silis of which tho wecian lino is so. At his intervnl (the Icfi) the side of tho prostate nud of the neek of the bladder heings wost superioish, and nsually less complicated with other iwportant structures, are therefore most accosille to the lithotomist Considuring the relatious of the purts in reference to this spave the lithetomist will see that a considerable portion nt its inter inferior or aual angle is ccoupied by the lateral half of the cud of the rectuan orerlappuing tho prostate in firont while ang tho outer side tbe pudie artery connses forvarids, The position of the bowe hive along insouter theroforo deterwiwes the line of incision mecessary th opreu tho blidider and of tho vessel therofore determines the ine of incision necessary fis opsu the undive of through the luternal lolie of the prostate, which pryjects also into this quace. This linv of section, O, eorumencing orer the Lulb sbout an inch in fiont of toe naus, woud, if carried downwarde sad outwardis to a peint midway hetween tho anns und tho tubur iviui, asoire the reetum on its inuer side and tho pudic artory exterually; whorese, if tho purts were Hivided in tho direction of the line D , thent is, minkuy through the space, annil parasted with the ischio-pudie raruns, цot only the rectun, hat the prostate we, wollin he missch and tho pudic artery or its primejpul trauches oudangeresl, moro equecialy if the artery of
the bulb hind a low origius. the bulb had a low origiu.
Fig. 3.-Tle bladder, L L L, is a perfectly symmetrital organ, nud as such is fitunter central in the pelvis. 1 ts huse, viawed throngh the prelvic outlet, shows its appenturges ou one side to be the exnet counterparts in form, sita nad situntion, of those on the ower: The median line, $\mathbf{A}_{\text {, exlibita }}$ its liduteral symanctry, the tryussecse Cine, B, shows issuteroposterior dissimilarity. The urethan, G, is neclian. The prostrae, $K K$, is bilobed; its sildes beigg united at the median line. The mosa decirentin, $\mathrm{N} N$, enter the brac of the provitato elose on either side of the median line; rull iamerliutuly on the ontcr sitho of those
 its own side. External to the vesienle are the chis ord he motere, J, cuin of the puostatic the lase of the bladder nt alout Lanlf an inct lehtind, anil to the outer side of, the prostatic robes The relations of those parts aro invainac, but tho teply olong the imer side not always so. In Fig. 1 the pudie urtory lang its usun eanso decply angs of ita brouches of tho ischio-pubio ramiss, is sulperficial to the levator ani muselc, wis gion lithotonyy. In in the normal order, thass escapiug the proplur lines, $O D$, of Fig. 2 the pudic artery holding the sampe rolativo postion gives ofo hurl, erosses the lines opposite tho ams, nad this cousinitrable hrumel, in niproad is of incision. In Fig. 3 tho pulio urtery couses in the pelviz wnler cover of tho levator sum, anl in contuot with tho base of tho bladder nail tho left lohe of the prost
wevitably he seevered in tho line of esection, K D , by whomsoover mulo.
Fig. 4.-The muscuhr strmetuves in councxiou with that purt of the anctike wither ns intervenes betweon tho bulb and tho prostate ilo not appear in ail sinjicees ailike tivem only to uuraher or form. In some they nre altagether wauting; in others a few of tien ondy

 ing them, In Fig. 4 Ihnve summed togectier wil the facts recondol cumerning thas aunu judging from what I have myself olsserved, these mascles nupear to mer ter of P PO NM. category, and which, if they were all prssent would asstune the serial orncr of pins Five. The All of them ariso frosu the ischio-pubio ranam, und are iuvertenl is tho nucdian hive. Anre"

 the well-known "truassersalis priurei," letwecm which and the gart \mathbf{P}, there orctow 0 , which

 anded from the serics thero occurs nuntouical variety, und henew contraricty of ofuni onitted from the a
fruitless though enllese. of forms considerell compuratisely, we construct a uniferm series, which is at once iafeligibile, but while forms arsesparately nul irrelutively contem. phatenl, they appear nas meaningleas hieroglyyhies nas the ulgelraic symbols a $+\mathrm{c}-\mathrm{d}=11$ are in the nind he desoil of calculation.
Fig. S.- The prostate mid aljoining part of the uretunu, G, are in sone instances elosely emburuced hy tro symare trical fascicali of nutscular fibres, \mathbf{H} H, which ane sithathed lebinil thosc, P P, in Fig 4. They ariso from the posterior lower horier of the symplhy yis pubis,
 Santorini descrintel ns the "lovetor prostate", which Winalow unised "le provetatiyup
 ing" which Mr. Gathric aleseriles as forninity (when uxisting) with the musoulur purte

 reasons: lat, it anises froan the symplyyis pullis, nall is insrted witle the levater aui, LL into the puriveal nuedian live; 2ut, the filires of both mustes orcrlie the forcyant of the prostate, preseut the eane serinu pamilel orlor, nill are betlind the deqp verineal fisecia, 3ril, the one is not uathunlly sepminile from the other, hane in all ceses cenel sprears ns th larto of a whell quantity, whichl, like the dinylurymm, is iswappalle of lartiol aetivu, and, as antayonistic of thant muscle, is the devator, aot only of che auve, but of the prostate, bladder, and the whole periwerum at the sumo time.
Fig. 6 represents tho natural relative pasition and ferme of the Llaslder bul urethra
 physiss B, which cuincides with their middles, and with the commos median line. The genem direction of the unotira inessuroil, in its rolhaxds state, from the resical orifice
 heut thus \sim; hut as the anterier half of the canal is frve and mavesblo in oll dinee tions, suml lerernits of farging the goverid farm whilie the posterior half is bixed, the latter
 nosst of the diftioulty in culleterism. That portion of the necthra which interseno lietwern the heck of the Ualider, HF , and the point, N , where the puis is sumpluide from tbe fornt of the symuluysis pabin liy tho sumpensary ligament nasaumes very nearly the firrma of a
 is turt of the urethra-the symplysis pulis \mathbf{E}, hriing diruetly over the lulb, aL TVe two extrences of the posterior courre of the uethim N F, aut the lower borler of tho symplysio

 most eqnal the depthi of its own curve, which meisures nhout an inch verticanly ; and here the cund passes through the cirecthr opecting in tho triangelar liganeut, the anterior liger of which etrueture sheathe the cuunl in its pusenge forwands white she pusterion ligeer sheaths it backwaris into the pelvie, anal formas n culpulv for the prostute, II H. That

 be rememberva as varying hoth in direction aunl length in inulividuals of the extremes of age. In the young this variation is outing to the usul highl pmaition of tho hlubiler, projecting ns it does front out of the pelvis into tho hypagnatric rogion, whilt in the old it jemy be cansed by nu culurgyed stute of the prostate: The curvic of tbo posterior lulf of the urethru now described is permaneut in all positions of the hody, while che nutcrior hulf ureiug free, rulaxed, amal moreable suay, by triotion tomards the namhiliens, bo mullo to

 and its struectrec in the relaxed stato is so vury iliatashle, thant it is not preible to estiunate the enlibre of its canol with fixed aceuracy. As a gracial rulc; tho arevimu is muell more the calile in the agad than in tbo adalt. Tho three portions into which the uruthes it diaseribeal as being divisille nro tho spongr, the neembraious and the prostatic. These duseribecu andicate the differvice in the stracinre of enel purt. The spoagy portion is the longes indicato thre and and, extending from the glans to the hulb, may bo said on a rough, hut for uractieal purposes in suffioiently nceurate estimate, to conpriso seven purts of thie
 Whele uretlunh which of the whole. Theso relhtive prapartions of the throw prifls are repuctimely ouvo part of ihe while. © the smine agge and in the sumo intlisidual at dillerent

 the scantunn ander tho pulis, letwews which point amil the bulb it beanmes eallurzead by the necelcrator uriap musclc. Tuo bullo aud ghans are ealargements of thu apoingy texture and do uot nifeet the colibre of tho cual next thom. Whill the gpougy texture is injected with bloal, the cuual of it is reuderel narromer than otherrvise. The camal or thy unvethry is uniform, eylindrical betweou the mentns aml the uphere of the pmethete. Tho mentio is tho zurrowest part of it, weil the prastatic part in the wilhatt. At the poiut of puyction is tho nurrowist parterns, and spongy portions bechiud the bulh, the canal is dexritel ins

fibrous mumbane (nbturator fisecia, seeningly a production of the sace sciatic ligam-ntit, conrse thence olliquely forwards and downwards, betwecu the othmator internis muscle and the origin of the levator ani to the forepart of the perinam, appearing here opposite the bult of the urethri. The prineipal lunches given off from the pudic artery of rither side, are (1st) the inferior hamorrhoidal, to supply the splineter ani museles; (2nd) the tramserse and superficinl perinenl, to the museles of the urethra; (3rd) the artely of the bulb of the urethra; (t th) the artery of the corpus cavernosum of the peuis; and (5 thl) the dorsul artery of the penis. The pudic nerve gives of branches corresponding in number and place with all those of the artery (except the thisel and font t_{1}), and haring the same destination. The arterics of the pelvic wisecra are severaily accompuied hy one or more veins. Around the prostate is frequently ohservable a plexus of veins; and those which ascend the rectum fion the anms are gencrally large and numerons, and devoid of valves. When those veins become raricose, owing to un olstrmetion of their circulntion, however caused, the rectum is latble to be affected with hemorrloids, or to assume a homorrlagic tendency, vicarious with menstruation.
When the bladder and rectum are examiued with a view to determine whether the active functions attributed to them depend upon force inberent to their structures, the appearances they present do not seem to me to indieate the reasonableness of that conclusion. The hladder, in its uormal state, appears as a mere membranous receptacle, in the walls of which mensenlar fibres are searcely distinguishable, and those which are at all evident ure of the involuntary elnss, as showa by their mieroscopic rharacter, and ure supplied by nerves of the sympathetie system. From this it must be evident that the bladder is an organ wholly out of the control of the will, and that a degree of mere tonicity is all that it can derive from its muscular tunie. The rectum is nore distinetly muscular than the bladder. The rectum has an outer layer of longitudinal, and an inner luyer of curcular, fibres; hat these are of the same elass (involuntury) ns those forming the muscular cont of the otber parts of the alimentary eaml, and their nerves are derived from the sympathetie system likewise. That the rectum, therefore (devoid of the aual sphineters), is not a voluutary organ, and that any action which it can perform is but such as that of which the other parts of the intestinal ennal are capable-riz., a vermicular motion-must be also very evident. Under these circunstances, and considering that the action necessary to void their contents is both rolmintary aud powerful, it must be inferred that other agents than themsclves produce that effect. From the position of the pelvic organs relative to those of the abdomen, it apperrs to me that this inference is justifiahle,
As the abdomen and pelvis form one general cavity, the organs contained in both regions arc therclyy intimatcly related; and so the actions exerted by the abdomiusl parietes on their containcd viscera must cause these to transmit all impressions made on them to the pelvic organs. By the contraction of the diaphragm and the ahdominal muscles, the whole abdominal viscera are subjected to compression; and, descending by that iufluence and by their own gravity, they compress the pelvic organs, and at the same time the muscles guarding the pelvie outlet, and the orifices of the bladder and rectum becoming relaxed or contracted nccording to the requirements, allow the perinarum to he protruded or sinstained voluntarily. Thus it is, that force origimating in the muscular parietes of the thorax and ahdomen is hrougbt so to hear upon the pelvic organs, as to become the primeipal means wherely the contents
of these are cyacuated. The abdominal muscles are, during this act, the antigonists of the diaphragm; while the perinaed muscles in action antagonize both, lut in their statc of relasation permit the former to exert their full expulsive action in reference to the pelvie viscera, of which latter being little more than passive recipients of their contents, it may henee be said that the voluntary proecsses of defecatiou and mieturition are performed rather for them than by them. The relations which they bear to the ahdomen and its viscera, and their dependence upon those relations for the due performance of those proeesses, are sufficiently explained by anatomical, physiological, nud prtbological facts. The muscles of the tborax, abdomen, and perineum are all served by nerves of the ccrebro-spinal axis; and they form a system whose actions in government of the viscera of the trunk are conscntaneons, whether roluwtary or refles. They are capable of a united action, or, like flexors and extensors, the action of some of them is oheyed by the relaxation of others, aceording to the viscus to be operated on. When the spinal cord sufters injury iu the cervical spine above the origin of the phrenic nerve, immediate death supervenes, owing to a paralysis of the respiratory system of uuscles. If the cord be injured in the lower dorsal spine, the diaplaragm supplied by the phenie nerve above is capahle of action, and so likewisc are the intercostal muscles which are served by the intereostal nerves, hat the abdominal and perineal muscles are paralyzed, and all coutrol over the pelvic organs is lost. When the cord is injured in the lower-lumbar spine, the abdominal muscles supplied by the lumbar nerves are active, together witb the diaphragm, but the perinæal muscles supplicd by the saeral nerves are paralyzed, and the pelvie organs are not within the sphere of volition. From these and the other facts mentioned, we may, I think, safely entertain the following opinion: that the term "paralysis" of the bladder or rectum, when that event attends spinal injuries, means, or sbould mean, only a paralytic state of the abdominopelvie muscular apparatus, entirely or in part; for in fact neither of those organs ever acts voluntarily per se any more than the stomach does: that therefore the name "detrusor urinx," as applied to the muscular coat of the bladder, is as much a misnomer (if it be meant that the aet of voiding the bladder at will be dependent upon that coat) as would be the uame "detrusor" applied to the muscular" coat of the stomaeh, under the meaning that this is the agent in the convulsive effort of vomiting: that, on the eontrary, the relative position of the pelvic organs, and the evident mauifestation of abdominal agency in the expulsory effort in respect to those organs, clearly indieate that the abdominal parietes, compressing the viscera against the pelvic organs, are the true detrusors; and that the only action of the perinxal muscles is one of retention by sphinction, whereas their relaxation is required to allow of the abdominal cffort to take cffect: that tbe lincs of force originating in the diaphragm are, hy the concave form of tbat musele, dirceted to the other abdominal parietes latevally and in front, and are by these deflected downwards and backwards through all points of the plane of the pelvie brim, and conscquently impinge upon all the opposing surfaces of the pelvic organs. The relative position of those organs is such as to reeeive those lines of force in full operative compression : the bladder receives them direct on its eonves summit; the rectun reeeires them direct on its front, hy reason of its anterior curve, which is resistingly supported by the sacrum behind and by the coccyx below, aud thenee they are deflected through the base of the pubic arch in front, aud according to the direction of the axis of the pelvic outlet.
the bulk. The urcthen withit the prostato consista simply of the mucous mombrabe lining the canal of thet hody: OD the flear of the prostatic urethra nppeana the crest of the worn tamanam, P, upon whiold the two seminal ducts open ly alistinct orifices direeted forwanke. O_{y} cither sile of the veru montanum tho flow of the prostate is porfonted ly whit are regurdad na the "exeretory ducts" of this so-called glasid. Projecting from thio lower purt wil the neck of the blumper nipears a small nipples-sheried hody, F, numed by Limutanit the nvulu vesices; it is the saine as that which (when enlurged) is unmed by Hume the "thirid lobe of the prostate", bat the part aloes not appear as proper to the hather in its nurame conditint. A little backwards, and oxterad to the uvula, are the orifiest $A G$, of the neeters, preaing on two ridges of tibrons mibstanoes, dircetal
is ceatral. These aro the fibres which have been nomed by Sir O. Bell as the "nuseles of the ureters;" but as they do not exist in the normal condition of tho bladder, the function mesigned to them by that austomist reny be questioned; and the samso may be maid of the fibres mhich, surrounding the vusical orifice, are beliered by sompe to act as a "splbincter resice." In thoso easer in which the muscles of tho ureters exist as ulistivet ridges between the urula and the openings of tho ureters, they form tho sides of a thinagulny space namel "trigone vesieal," of which a transwerse line drawn bokreen their posterior cuds represents tho base, and the uvila the apex. Belaind the trigone thuro is a depression in the brse of the litalder named "bas fond," which, when a stone is formed in that orgun, usaally receives that body.

Fiou
Fio. 5

2m

COMMENTARY ON PLATES XLII. \& XLIII.

TIE SURGICAL DISSECTION OF THE SUPERFICIAL AND DEEP SRRUCTURES OF TILE MALE PERLN.EUM, LITHOTOMY, \&c.

The median line of the hody is marked as the situation where the opposite halves unite and constitute a perfect symmetrical figure. Every strueture-superfieial as weil as deep-wwhich occmpies the median line is either single, hy the union of halves, or dual, by the elenvage and partition of laalves. The two sides of the body being absolutely similar, the median line at wbich they unite is therefore common to both. As union along the median line is an occhusion taking plaee hy the junetion of sides; so every hiatus or opening, whether normal or abnormal, which happens at this line, signifies an omission in the process of central union. Oeeurring at the same time with this process of eentral union, is manifested another proeess-that of the inerease or development of median parts from minus to plus; and of all suels forms, whether normal or abnormal, the lesser is to the greater but as an arrest in development simply. Tlie sexual peculiarities are the results of the aperation of both those laws; and all forms which are anomalous to either sex may be interpreted as gradations in both modes of development-thus: taking the developmental live as represented by the serial numerals $9,8,7,6,5,4,3,2,1$, of the extremes of whieh lines, 9 , as the quantitively greatest may be regarded as the male conformation, and 1 as the quantitively least that of the female, so all the intemmediate quantitics being as plus to 1 , and ns minus to 9 , manifest themselves as the anomalies-as the so-called lusus natura; a few of these latter oceasionally eome under the notice of the surgeon.
The region whieb extends from the umbilieus to the point of the coceyx is marked upon the eutaneous surfaee by a cential line dividing tho lypogastrium and the penis, and by a ruphe dividing the scrotmm and the perinaum respeetively into equal and similar sides. The umbilicus is a cicatrix formed after the metamorphosis of a median feetal structure - the placental cord, \&c. In the normal form, the meatus urinerius and the anus coineide with the line of the median rapled, and signify omissions at stated intervals along the line of centraI union. Between those openings the labia pudendi are ns a licleft scrofum. When hetween these intervals the proecss of union happens likewise to be arrested, malformations are the result; and of these the following are cxamples:Eatrusion of the bladder at the hypogastrium is caused by a congenital hiatus at the pubie part of the linca alla, which is in the median line; Epispadias, whieb is an urethral opening on the dorsmm of the penis; and Hypospadias, which is a similar opening on its muder surface, are of the same nature-namely, omissions in medien union at unusual phaces. Hermaphrodism may he interpreted simply as a structural defect, compared to the normal form of the made, and as a structural erreess eompared to that of the fomale. Spina bifida is a cougenital mulformation caused hy a hiatus in union along the posterior median line of the saerum or the lumbar spine, and admitting a protrosion of the spinul uembraues. As the process of union along the median line may err hy a defect or omission, so may it, on the other lund, err by an excess in fulfiluent, as, for example, when the urethra, the vagina, or the anus are fonnd to he imperforate. As the medimn line of union this seems to influenee the form of the liypogastrinm, the genitals, and the perineum, the dis. section of these parts lias heen here condueted aceordingly.
On tracing the common integument from the puhic region through the scrotun to the perinarum, we find it so disposed in folds as to iudi.
cate the forms of the principal subjacent parts and those of the mem braces especially. At either side it marks the fumoro-pubic folds by being intimately attached to Poupart's liganent, and in tlose folds the spermatic cords may be felt. Drooping thence lonsely it forms the scrotal lag inelosing the pendent testieles, and the middle of its lurepart is marked by a rapbe, which extends throngh the perincum to the ams. In this situation it appears marking a space of triangular form invertech, the base of whieh is at the line of umion between the serotal and perineal skin, the apex of whieh is at the amus, and the sides of which are eontinuous with the femoropubic folds. Throughout this extent the skin may be regarded as surgically distinet from that of the thieghs and anal region, and on removing it we shall find the superficial fascia to he similarly disposed and fior a similar primpose-that of isolating the inguino-perinaal rerion from neighhouring parts.

By disseeting the skin and suhineent adipose membrane from the bypogastrium, we expose the superficial fascin. Tbis menbraue, $\mathbf{E E E}$, Fig. 1, is, in the middle hive, adherent to A, the linea alba, and therehy eontributes to form the central depression whieh extends from the navel to the pmbes. The adipose tissne, which in some subjeets greatly aceumulates on cither side of the linea albn, renders this depression more marked in them. At tbe folds of the groin the fascia is found adherent to Poupart's ligament, and this also acconnts for the depressions in both these localities. From the centrol linea alla to which the fasein adheres, outwards on either side to the folds of both groins, the membune forms tro distinct sace, which droop down in Iront, so as to invest the sper matie cords, $D D$, the testieles, $\mathbb{E}^{* *}$, and the penis, $\mathrm{C} \mathrm{C}_{1}$ in a mamer simil: to that of the skin covering these parts. As the tiso saes of the supurticial fascin join each otber at the pubie srmplysis eoinciding with the linea alba, they form by that union the suspensory ligameut of the penis, \mathbf{B}_{1} which is a structure precisely median.
The superficial laseia laving invested the testicles ench in a distinct sae, the adjacent sides ol both these sics, by joining together, contribute to form the median septum scroti, D D, Fig. 2. In the perineum, Fig. 4, the fascia, Λ_{1} may be traced from the hack of the serotunn to the nums. In this region the memhrane is found to adhere laterally to the rami of the ischium and pubes; whilst along the medinn perinanal line the two sacs of which the membrane is composed unite, as in the scrotum, ane form an imperfect septuin. In fiont of the anus, bereath the splineter ani, the faseia degenerates into cellulur menbrane, one layer of which is spread over the adipose tissne in the ischio-rectal spate, whilst its deeper and stronger layer mites with the deep perinaal fascies and hy rhis conmexion scparates the nrethral from the aual spuces. The superticial fiscial of the hypogastrimm, the serotum, and the periname forming a continunis membrane, and being adherent to the several parts alove-noticed, may le regarded as a geueral donble sac, whieh isohates the inguinoperinazal region from the lemoral and anal regions, and leence it happrens that when the urethra hecomes ruptured, the urine which is extravasated in the perincuin is allowed to pass mp over the scrotmen and the abdomen, involving these parts in eousequent indammation, whilst the thighs and anal spaee are exempt from that occurrence. The thmicre paginales, which form the inmediate coveriugs of the testicles, $\mathrm{c} \mathrm{c}^{\circ}$, Fig. 2, eunuot be entered ly the urine, as they are distinet sucs uriginally

Fig. 1. $-\Lambda$, Lisea alba,-B, Surpuasory ligamene of the penis--C C, Corphrit cavernoen penis. $-D \mathrm{D}$, Spermatio cords- $-\mathrm{E}^{*} \mathrm{E}^{\text {En* }}$, Supurticial fascia of the hypogastrium fonning phenths for the cords mind testicles in the scratum.
Fig. 2. Septum peetiniforme leotsvent the ent corporn envernass, - B, Urethra ing section. Fig. 2. Septum pectimiforme in the turicta raginales-D D, Scratal sequtunu.
Fig. 3. - A, Perjenal raplid- B_{1}, Situation of hilb of mithm- C, C, siturtion of the

segment from the grenter circle, repmesating the dilated metum, and? touching elio leser cirole relnowating the collapsed rectum.
 Foint of the cocegx-11, Luns- J J, Perinual margio of the gletei wuweles
Fig s.-Dther purta lettend as in Fig. 4.- B, Asceloratur turima-C, Tomdinous
 unsectos
protruded from the :bblomen. It is in consequence of the impertlect atnte of the inguino-perineal septum of the faseia, that urine effused into one of the sacs is allowed to cuter the other.
Like all the ether struetures which join on either side of the median Like, the pullis, A B, Fig. 2, appears as a symuetrical organ. While riewed in section, its two corpora cavemosa are seen to unite anteriorly benenth the symphysis pubis, and by this union to form a septum "pectiniforme;" posteriorly they remain distinet and lateral, D , Fig. 5, lying along the ascending pubic rami to which they and the erectores penis muscles in from of them are attachecl. Where the corpora cavernosa are separate and in front of the ischio-pnlie rami they are named the erurn penis. The urerlira, B, Fig. 2, is also composed of two sides, united along the median line, but formiug between them a canal by the eleavage and pm* tition of the uretlural septum, and just as if the septum peetiniforme remained of distinct sidus, ench layer being bent ontwards from the median line and forming a canal between then. That this is the siguification of the form of the urethral eamal there are many evidences to show: that the uretlora is no exception to the geueral rule of all median parts, being duplex and hence symmetrieal, is rendered apparent in an appendnge of the arethra itself, viz., the bulb, which is frequently hilobed. All the other structures of the perinamm will be seen to be eitber double and lateral, or single and median, aecording as they stand apart from, or approach, or occupy the central hine.
The perinamm, Figs, 4, 5, is that space which is hounded above by the arell of the pubes; belund by the os coccygis; and the lower borders of, J, , the erlutei muscles and snero-sentic ligauents; and laterally ly 8 P, the ischio-pulhic rami. The osscons boundaries enn be felt through the integranchts. Detween the lack of the serotum and the anus the perincum swells on both sides of the raphè, A B. Fig. 3 , and assunes a form corresponding with the hag of the superficial fascia which eneloses the strnetures connected witb the urethra. The ams is eentrally situated in the depression formed between the ischintie tuberosities and the double folds of the nates.

The perincura, Fig. 5, is, for surgical purposes, deseribed as divisible into two spaces (anterior and posterior) by a transverse liue drawn from oue tuber isclui, F , to the other, and crossing in front of the auus. The anterior space, $A D D C$, contaius the urethra; the posterior space, CFFG, contains the rectum. The central raphè, $\triangle B C H G$, traverses both these spaces. The anterior or nrethral apace is (while viewed in referenee to its asseons houndaries) tringglar in shape, the apex beiug formed loy the pulsic symplysis beneath A, Fig. 3, whilst two liues drawn from Δ to c c, would coineide with the isehio-puhie rani which form its sides. The raphe in the anterior space indicates the eentral position of the urethra, as may be ascertained by passing a sound into the bladder, When the slanft of the instrument will be felt prominently between the points $A B$. Behind the point B , the sound or staff sinks deeper in the perinzeum as it follows the curve of the urethra backwards to the bladder, and becomes overlaisl by the bull, \&c. The iseliatie tuberositics are, in all subjects, sufficiently promincut to be felt through the integuments, \&c.; and the line whieh, when drawn from the one to the other, serves to divide the tro perinaal spaces, forms the base of the anterior one. In well-formed subjects, the naterior space is equiangular, the buse being equal to enels side; hut according us the tuberosities approaeh the median line, the base hecomes narrowed, and the triangle is thereby rendered acnte. These eirenmstanees influenee the direction in which the lirst ineision in the lateral operation of lithotomy should be made. When the tuberosity of the left iscbium stands well apart from the perineal centre, the line of incision, BD, Fig. 3, is carried obliquely from above downwards and outwards; but in enses where the tuberosity ap. proaehes the ceutre, the ineision must necessarily be made more vertieal; whereby the rectum, represented by the outer larger circle in its distended state and by the inner smaller eircle in its andistended state, beeomes more or less liable to he wounded. The posterior perineal space may be deseribed on the surface by two lines drawn from co, the ischiatic tuberosities, to the point of the cocejx, and forming its sides and apex, whilst the transverse line is its base.

By removing the integument and superfieial faseia, Fig. 5, we expose the superficial vessels and nerves, fogether with the muscles in connexion with the urethra and the ams. In front of the anus appears a tendinous central point, c , alliorling a common attachment to the following muscles: from it arises the accelerator urina, the fibres of which, symmetrically arranged, embrace the urethra and its bulb. Into it is inserted the sphincter ani, which, arising from the point of the eocesx symmetrieally, surrounds the anus. Those two museles oeenpy tbe medinn line, whieh is tendinous, to which their fibres are attaelied, and by whiel each is
marked into distinct luteral muscles nnited.
tendinous point are also inserted two small nuscles (transverste perinai), each of which arises from the tuber ischii of its own side, and will be observed uaturally to serve to mark the perineum into the anterior or urethral, and the posterior or rectal spaces. Considering the disposition of all those muscles, it will be evident that, in order that erch may be specially effeetive, their aetions must be united and antaganistic by traction from a common centre. On the erura penis, and arising from the inmer sides of the ischiatic tuberosities, appear the erectores penis nuseles, betreen each of which and the aecelerator urinx, the superficiales perinci arteries and nerves course forwards to the serotum, after giving off their first most considerable branches in the direction of the transversales museles. Behind those museles, in the isebio-rectal fossa, appear the numerous inferior homorrhoidal small arteries and nerves. All those, arterial and nervous, are derived from the pudie artery and nerve.

The perimaal muscles having been brought fully into view, Plate XLIIl., Fig. 1, we notice that on either side of the anterior space appears a small angular interval, formed between the aecelerator monne, the erector penis, and the transverse muscle. Along the surface of this interval twe found the superfieial perinaal artery and nerve passing forwards; and decp in it, beneatb tbese, may now be obscrved, m, the artery of the bulb, arising from the pudic, and crossing inwards, under cover of the anterior layer of the membrane, c, nawed the deep perineal fascia. The first incision in the lateral operation of lithotomy is commenced over the inferior imer angle of this interval.

The muscles oecupying the anterior perineal space require to be removed, Fig. 2, in order to expose the uretbra, a b, the crus penis, D, and the deep perinaal faseia. This being done, the fascia will be now seen stretched across the subpubie triangular space, reacbing from one ischio-pubie ramus to the other, whilst by its lower border, c c, corresponding with the line of the transverse perinei muscles, it becomes continuous with the superfieial faseia, in the manner before deseribed. The deep perinænl fascia (triangular ligament) encloses between its two layers, on cither side of the urethra, the pudie artery, E , the artery of the bulb, Cowper's glands, c^{*}, and some transverse muscular fibres occasionally to be met with, to which the name "Compressor urethra" has been assigned. At this stage of the dissection, as the prineipal vessels and parts composed of erectile tissue are now in view, tbeir relative situations sbould be well noticed, so as to avoid wounding tbem in the several euttiug operations required to be performed in their vicinity.

Along the median line (marked by the raphe) from the scrotum to the coecy x , and elose to this line on eitber side, the vessels, with the exception of the artery of the bulb, are nnimportant as to size. The urethra bes along the middle line in the anterior perineal space; the rectun oecupies the middle in the posterior space. When either of these parts specially require to be ineised-tbe urethra for impassable stricture, \&e., and the lower part of the reetum for fistula in ano-the operation may be performed without fear of inducing dangerous arterial hemorrhage. With the object of preserving from injury these im. portaut parts, deep incisions at, or approaching to, the middle line must be avoided. The outer (ischio pubic) boundary of the perinzum is the line along which the pudie artery passes. The anterior half of this boundary supports also the erus penis; hence, thercfore, in order to avoid these, all deep incisions should lie made parallel to, but removed to a proper distance intemal from this situation. The structures placed at the midale line, and those in eounexion with the left perinaal boundary, require (in order to insure the safety of these parts) that the line of ineision neeessary to gain aceess to the neek of the bladder in lithotomy should be made througb the left (as being the more convenient) side of the perincum from a point midway between s , the bulb, and D, the crus penis above, to a point, IT, inidway between the anus, F, and the tuber isebii, \boldsymbol{H}, below. As the npper end of this incision is commeneed over the situation of the superfieial perinanl artery and the artery of the bulh, the knife at this place should only divide the skin and superficial fascia. The lower end, E, just clears the onter side of the dilated lower part of the rectum. The middle of the incision is over the left lohe of the prostate gland and neek of the bladder, wbieb parts, together with the membranons portion of the uretbra, are still concealed by the deep perinwal fuseia, the structures between its layers, and the anterior fihres of $\mathrm{K} \mathbf{K}$, the levator ani musele. The incision, if made in due reference to the relative situation of the vascular parts ahove noticed, will leave them untouched; but when the pudic artery, or sone one of its branehes, deviates from its ordinary course, and crosses the line of incision, a serions hrmorrhage will ensue, despite the anatomical knowledge of the most experieneed operator. When it is requisite to divide tbe super-

E10 3
Fig. 4

fieial and deep sphincter ani, as in the operation for complete fistula in ano, if the incision be made transversely in the ischio-rectal fossa, the hemorrhoidal arteries and nerves eonverging towards the anus will be the more likely to eseape being wounded.
The urethra, at its nembranons part, m, Fig. 3, Plate XLIll., which eommences behind the bulb, perforates the centre of the deep perineal fasein, $\mathrm{C} C$, at about an inch and a half in front of F , the anus. The anterior layer of the faseia is eontinued forwards over the bulb, whilst the posterior layer is reflected brekwards over the prostate gland. Behind the deep perineal fascia, the anterior fibres of F , the levator ani muscle, arise lrom either side of the pubie symphysis posteriorly, and deseend obliquely downwards and forwards, to be inserted into the siles of R k , the reetum, above the anus. These fibres of the misele, and the lower border of the frseia which eovers them, lie immodiately in front of the prostate, n n, Fig, 4, and must necessarily be divided in the upcration of lithotomy. Previously to disturhing the lower cud of the reetum from its natural position in the periamma, its elose relation to the prostate and base of the bladder should be noticed. While the snus remains connected with the deep perineal faseia in front, the fibres of the levator ani musele of the lelt side may be divided; and by now inserting the finger between them and the reetum, the left lobe of the prostate can be felt in apposition with the forepart of the bowel, an inely or two above the anus, It is owing to this connexion between these parts that the lithotomist has to depress the bowel, lest it be wounded wbile the prostate is being ineised. If eithere the bowel or the bladder, or both together, be over distended, they are brought into closer appusition, and the rectum is eonsequently more exposed to danger during the latter stages of the operation The prostate being in contact with the reetum, the surgeon is cnabled to examine by the tonch, per anum, the state of the gland. If the prostate be discased and irregularly enlarged, the urethra, whieb passes tbrongh it, becomes, in general, so distorted, tbat the surgeon, after passing the eatheter along the urethra as far as the prostate, will find it necessary to guide the point of the instrument into the bladder by the finger introdnced into the howel. The middle or third lobe of the prostate heing enlarged, bends the prostatie purt of the uretbra upwards. But when cither of the lateral lobes is cularged, the uretbra beeomes bent towards the opposite side.
By dividing the levator ani musele, к к, on both sides of the reeturn, n, Fig. 4, and detacbing and depressing this forn the perineal centre, the prostate, N , and base of the bladder, o , are brought into view. The pelvie fascia may be now felt reffected from the imer surfice of the levator ani muscle to the bindder at a level corresponding with the bise of the prostate, and the nevk of the bladder in front, and the vesieule seminales, P P , laterally. In this mamer the pelvie faseia serves to insulate the perineal spaee from the pelvic cavity the prostate oceupies the eentre of the perinaum, If the purinæum were to be penetrated at a point midway between the bulb of the urethra aud the anus, and to the depth of two inehes straight backwards, the instrunent would transfix the apex of the prostate. Its left lobe lies direetly under the middle of the line of incision which the bthotomist mukes through the surtice; a fibrous membrane forms a eapsule for the gland, and reuders its surfaee tough and unyielding, but its proper substance is friable, nud may be lacerated or dilated with ease, after having partly incised its fibrous envelope. The menbranous part of the urethna, m, Fig. t, enters the apex of the prostate, and traverses this body in a line, nearer to its upper than to its under surface; and that portion of the canal which the gland surrounds is named prostatic. The prostate is scparated frown the pudie artery by the levator ani musele, and from the artery of the bulb, by that musele, the decp perineal faseia, and the muscular librus enelosed between its two layers.
The prostate being a median strueture, is formed of two lobes, united at tbe median line. The hulbus uretbre being also a median stracture, is oceasionally found notched in the centre, and priscuting a bifid appearance. On the base of the hladder, 0, Fig. 4, the two vasa deferentia, Q \& are seen to converge liom behind forwards, and to enter
the base of the glund; a trinngular interval is thus formed between the Fasa, narrower before than behind, aurl at the - niddle of this place it will be observed that the lwint of the troenr may be passed (through the reetum), for the purpose of evacuating the conteats of the blidder, when other measures fail. When this operation is required to be performed, the situation of the prostate is first to be aseeretained througb the bowel; and nt a distance of an inch behind the posterior border of the ghlund, preciscly in the mediun line, the distended base of the bladder may be snfely punetured. If the trocar pieree the bladder at chis point, or if un ineision exactly median were to be made through the inemloratious urethra, through the prostate, and the base of the bludder, the seminal ressels convergingr to the prostate from either side, and the rectoverical serous ponel behind, will escape being wonndral. But such incision is ןrevented by the apposition of those parts and the rectum. On the wher hand, it is evident, tbat by ineising the prostate through its left lobe onlipuely, in order to leave the rectum intact, the semina! vessels are cudugered; and, judging from tbeir position, it would appear to me that they are always injured in lithotomy. If the prostate happen to be much enlarged, the relative position of the neighbouring purts will he found disturbed, and in such ease the bladder can be punetured above the pubes with greater ease and safety. In cascs of imymssubfle stricture, when extravasation of urine is threatened, or Lus alrewly necenred, the uretbra should be opened in the perineum behind tbe place where the strieture is situated, and this (in the present instance) certainly seemy to be the more effectual incasure, for at the sume time that the stricture mayy be divided, the conteuts of the bladder may be cvacuared through the perinarm. If the membranous part of the uretlira be that where the strieture exists, a stuff witb a eentral groove is to be passed as far as the strictured part, and having aseertained the position of the instrument by the finger in the bowel, the perineeum should be incised, itt the middle line, between the bulb of the urethra and the nous. The urethra in this situation will be found to curve baekwards at the depth of :wn inch or more from the surface. The point of the stalii is to be filt for, and the urethra is to be incised upou it. The bistoury is neat to be earried bachwards through the stricture till it enters that purt of the urethra (usually dilated in such eases) whicb intervenes between the seat of obstruction and the neck of the bladder.
The luteral operation of lithotomy is to he performed aecording to the above deseribed amatomienl relations of the parts coneerned. The following is the mode of operation usually followed:
The bowel heing empty aud the bladder moderately full, a staff with a groove in its left side is to be passed by the urethru into the blidder. The position and size of the prostate is nest to be ascertained by the left forefinger in the reeturn. Having now explored the surfiee of the perinaum in order to determine the situation of the teft tuberosity and isehio pubic rumus, in rchation to the periuseal middle line, the staff being held steadily against the symphysis pubis, the operatur proceeds to divide the skin and superficial fascia on the left side of the perimoum, commencing the ineisiou on the left of the raphe, about an iuch in front of the anus, and currying it downwards and outwards nudwny between the anus and ischintie tuberosity, to a point beluw these purts. The left forefinger is then to be pussed along the incision for the purpuse of parting the loose cellular tissue; and ans of the more resisting structures, such as the fascia, the transverse and levator ani musches, are to be divided by the knife. Deep in the forepsirt of the womnd, the position of the stalf is next to befelt fir, and the structures whech cover the membranons portion of the arethra are to be enutiously divided. Recollecting now that the artery of the bulb passes antevior to che stalf in the urethra, on a level with the bulb, the vessel is to be avoided by inserting the point of the linife in the grove of the staff us fin brekwards -tbat is, as near the apes of the prostate-us possible. The poiut of the knife having been inserted in the grouve of the stati, the bowel is then to be depressed by the left forefinger; und now the knife, with its back to the stall, and its edge lateralized (towards the lower part of the left tuber ischii), is to be pushed steadily along the groove and decely

 cintic ligmasuts- - II, Porimend telubious contre

 15, Rectum.

 down.
in the direction of the staff, und made to divide the inembranous pint of the uretira and the anterior two-thirds of the left lohe of the prostate. The gland must necessarily be divided to this extent if the part of the urethra which it surrounds he traversed by the knite. The extent to which the prostate will be divided depends upon the degree of the angle which the knife, phosing along the urethra, makes with the staff. The frenter this angle is, the greater the extent to which the gland will be incisel. The knife being nest withdrawn, the left forefinger is to be passed throngl the opening into the bladel, and the parts are to be lilated hy the finger as it proceeds, guideal by the staff. The staff is now to be renoved while the point of the finger is in the neek of the hadier, and the forceps is to be passed into the bladder along the fiuger ns a guile. The ealculns, now in the gripe of the forceps, is to be extracted by a slow mudulating motion.
The general males recommended to be adopted in performing the operation of lithotumy are as follow: -1 st, The incision through the kin and sub-eutuncous cellnlar membrane slould be freely made, in orler tbat the stone may be easily extracted and the urine have ready egress. The iucision wbich (judging from the anatomieal relations of he parts) appears to be best caleulutell to (dfect these objects, is one which would extend from a point an inch above the anus to a point in the posterior perinasal spnce an inch or more helow the anus. The wound thus made would depend in relation th the neck of the bladder: the important parts, vessels, \&cc, in the anterior perimeal spaee would he avoided where the incision, if extended upwards, would have no effeet whatever in faeilitating the extraction of the stome or the egress of tbe urine; and what is also of prime importance, the external opening would directly correspond with the incision through the prostate and neek of the bladder. 2nd, After the incision through the skin and superfieial faseia is made, the operator should separate as many of the deeper structures as will admit of it, by the finger rather than by the knife; and especially should use the knife enutiously towards the extremities of
the wound, so as to avoid the artery of the bulb, nad tbe bulh itself in the upper part, and the rectum below. The pudic artery will not be cudangered if the deeper parts be divided by the knife, with its edge directed downwards and outwards, while its point slides seeurely aloug the staff in the prostate. But it needs searecly to be ohserved that a serious hamorrlage will be inevitable and eaused by no error of judgment, if the artery of the bulb arise opposite the anus, -or if the inferior hatmorthoidal arteries he larger than usnal,-or if the pudic artery itself course towards the median line, or in contact with the left lobe of the prostate, for either would cross the line of ineision, or if the prostate be surrounded by a plexus of enlarged veins. 3rd, The prostate should be incised sparingly, for, in addition to the known fact that the gland when only partly eut admits of dilatation to a degree suffieient to admait the passage of even a stone of large size; it is also stated upon high authority, that by ineising the prostate aud neek of the bladder to a length equal to the diameter of the stonc, such a proeeeding is more frequently followed with disastrons results, owing to the cireumstance that the pelvie fascia being divided at the place where it is refleeted upon the base of the gland and tbe side and neek of tbe bladder, allows the urine to infiltrate the cellular tissue of the pelvis.* Wben the calculus is large, it is recommended to divide the prostate by an incision combined of the transverse and the lateral; the advantages gained by such a comhination (hy notehing the right lohe of the prostate also) heing said to be, that the sides of both sections are thereby rendered more readily separable, so as to suit with the rounded form of the body to be extraeted.
The position in which the staff is held while the memhranous urethra and prostate are being divided, should he regulated by the operator himself. If he requires tbe perinxum to be protruded and the urethra directed towards the place of the incision, he ean effeet this by depressing the landle of the instrument a little towards the right groin, taking care at the same time that the point is kept beyond the prostate in the interior of the bladder.

* "The whject in following this mothod," Mr. Lishon observea, "is to avoid all interferenee with the reflexiou of the ilio-vesical fascin from the sides of the pelvic cavity over the lase of the glamd anil side of the bladder. If this uatural boumlary betwist the external aud internal colluhar tissue is broken up, there is scarcely a possibility of preventing intiltration of the urine, which must almost certainly puve fatal. Tho prostuto and other parts around the veck of the hadder are very elustic mud yiolding, so that without much solution of their continuity, anl without the least laceration, the opening can he so ililated no to adait the fordinger readily throngls the same wound; the forceps can be intruitueed upou this as a guide, and thuy ean also be removed aloug with a stono of eonsiderahbe dimensions, say from thre to wearly five inches in eircusuference, io one direction, nud from four to bix in the largest." - Practical Surgery, Jage 510 . This dootrive (founded, no ilombt, on Mir. Liston's own grat experience) ceinciles with that Grst expressed by Searput Le Cut, ami others. Sir Bempunin Brodio, Mr. Stanley, aud Mr. Syme are also advoeates for dimitral incisions, oxtembing no farther than in purgial invision of the prostate, tho rest being effectell by dilatation. The experieuce, however, of Chesolden, Martincan, and Mr. A. Choper, inclined tben in favour of n rather firee incision of the prostate nud ueck of the himilder wopartioucd to the sizo of the culerdns, so that this may bo cxtracted freely, withont laceraling or contusiug the parto, and, suya tho dietinguishen lithotomist Klein, "upan this husis rests the suceess of my operations; and hence I iuvariably wake it a rale in let the incismu be mether tro large than two nmall, and never to dilate it with any bhat instrument when it baypens to bo too diminutive, but to enlargo it with a knify, intro-
duced, if neecssary, soveral times." -Practische Ansichton der Budeutendsten Chirurgiechs Operationen. As to the mude in which the superieial and deep ineisions in lateml lithotonuy should be made, Mr. Fergussen remarkas, "a free incision of the skin I consider a most important fenture in tbe operation; but beyond this the applicetion of the krife ahould, in my opinion, be extromely limited. In so far is I can porceive, there shonld be no hesitation in eutting nay part of the ginnd which seenas to oflor resistance, with tho exception, perhaps, of its under surfiee, where the position of the scminal dacts, nud other eirenmstauces slontd deter the surgeon from using n outting instrumeut.,"-Prectical Surgery, p. 643. Opinion月 of the highest anthority being thus opposed, in referente to the question whether free or bimitad weisiols in tro beek of tho bladder are followed rejpectively by the greater number of fated or farourable results, and these being thought mainly to depend upous whether tho pelvic fincein be opened or not, one need not hesitate to conclude, that siuce facts scens to bo botied in support of both modes of pratice equally, the issue of the cases theniselves mint really be depondent apon otber ciroumstances, buch as tho state of the constitution, the: state of the blader, and the relative position of the intermal and external incisions. "Some individuals (ubserves Sir B. Brodie) are gooll auljects for the operation, and recover perhaps without a bad symptom, alhough the operation may have been very indifferently perfurmed. Others may be truly said to be bad antjeots, and die, cyen thongh tho operation be performed ia the most perfect nunnuer, What is it that constitutes the essentint differchue betwern these two chesses of eisest It is, necording to my experience the presence or absonco of orgruic diserse."-Disuesses of the Urinary Oryrns.

CONGENITAL AND PATHOLOGICAL DEFORMITIES OF THE PREPUCE AND URETIRA,- STRICTURE AND MECHANICAL OBSTRUCTIONS OF THE URETHRI.

WIEN any of the central organs of the body presents itself in a form differing from that which we term natural, or structurally perfect and fumetionally efficient, we have to inguire if it be a congenital or patho. logical effect with a view to the possibility of vernedinl measures; for in the former case the state of the parts is generally such that the peculiarity of eonformation takes place to the total absence of the natural, and is therefore beyond the pale of art; whereas in the latter case, both conditions-the abnormal and the normal-may co-exist, and the worse condition be made at choice to succmub to the better: If the deformity be one which results as a malformation, ascibibable to an error in the law of development, it is always characterized as an excess or defect of the suhstance of the organ at, and in reference to, the median line. And when any of tbe canals wbich naturally open upon the external surface at the median line happens to deviate from its proper positiou, sucb deviation, if it be the result of an error in the law of development, always occurs, by an actual necessity, at the median line. On the contrary, though deformities which are the results of diseased action in a central organ may and do, in some instances, simulate those which occur by an error in the process of development, the former camot bear a like interpretation with the latter, for those are the effects of evervarying eireunstances, whereas these are the effects of certain deviations in a natural process-a law wbose course is serial, gradational, and in the sequent order of a coutinuous chain of cause and effect.

Frgune I represents the prepuce of an adult in a state of eongenital phymosis. The part hypertrophied and pendent projects nearly an inch in front of the meatus, and forms a canal, continued formards from this orifiec. In infancy the prepuce is naturally, in some degree, in a state of phymosis, but in the advanee of years it assumes its capabibity of retraetion. When, however, the part at any period of life presents the cbaracter of the Figure referred to, it may he regarded as a malformation. As the prepuce in such a state becomes devoid of its proper function, and hence must he regarded, not only as a mere superfluity, but as a cause of impediment to the generative function of the whole organ, itt should be removed by an operation; the best mode of conducting which proceeding at once suggests itself, viz., that of a circular amputation of the part.
Figure 2 represents the prepuce in the condition of paraphymosis following gonorrbcal inflammation. The part appears constricting the penis and uretbra behind the corona glandis. This state of the organ is produced in the following-mentioned way:-tbe prepuce, naturally very extensible, becomes, while covering the glans, intlamed, thickened, very extensible, becones, while covering the glans, intamed,
and its onifice contraeted. It is during this state withdrawn foreibly backwards over the glans, and in this situation, while being itself the first eause of constrictiou, it induces another-mamely, on arrest to the venous circulation, which is followed by a turgescence of the glans. In the treatment of such a case, the indication is, first, to reduce by gradual pressure the size of the glans, so that the prepuce may he replaced over it; secondly, to lessen the inflnmation by the ordinary means; and, thirdly, if the preputial orifice remain unuaturally contracted by an inestensile ring of new deposit, to remove this part by a circular incision. If it were found impossible to reduce the prepuce from behind the glans to its natural position, the constricting band shonld be liherated by an incision.
Figune 3 exhihits the form of a gonorlical pbymosis. The orifice of the prepuce is contracted, the veius are swollen, and the tissue of it infiltrated. If in this state of the part, consequent upon diseasod netion, or in that of Fig. 1, which is congenital, the foreskin be retracted over the glans, a paraphymosis, like Fig. 2, will be produced. As a gonorrhoeal or a chanerous phymosis is the result of inflammation, the increase of the prepuce, and the contraction of its orifice, being due to serous infiltration; its treatment should be antiphlogistic and persevered in, in the hopes of rendering unnecessary that most uncouth of all operatious in surgery-a longitudinal division of the prepuce, which ultimately proves such an impediment as to require nimputation-
Frgure 4 shows a form of phymosis in which the prepuce during inflammation has become adherent to the whole surfuce of the glaus. The orifiee of the prepuee being directly opposite the meatus, and the
parts offering no obstruction to the flow of urine, an operation fur scparating the prepuce froin the gla,s would not be required for chat end, and for any other would be an ineffectual and difficult measure, and for these reasons inadmissible.
Fagure 5.-In this figure is represented the foria of the penis of an adult, in whom the prepuce was renoved by circumcision at an carly age aceording to the Jewish rite. The membrane covering the ylans and the purt which is cicatrised becomes in these cases dry, indurated and deprived of its special sense-a result which illustrates the phy siological use of the prepuee.
Figure 6.-In this figure the glans appears protruding throngh the upper surtace of the propuce, a a, which is thickened and corrnguted. This state of the parts was caused by a vencreal ulceration of the upper part of the prepuce, sufficient to allow the glans to press throurh the aperture. The prepnce in this condition being supurflums, wholly useless as an excrescence, and acting as an inpediment, should be removed by operation.

Figure 7.-In this figure is shown a condition of the glans and prepuce, a u, resembling that hist mentioned, and the affect. of in similar cause. By the removal of the prepuce when in the position bere represcuted, or in that of Fig. 6 , the organ may be made to assume tbe appearance of Fig. 5.

Figure 8 represents the form of a congenital hypospradias in the adult. The corpus spougiosum, $a d$ docs not continuc the canal of the urethra as far forwards as the nsual position of the meatus, but has become defective behind the fremum preputii, leaving the camal "plen at this place. Iu a case of this kind might an operation on the Taliacotian principle be tried, in order to close the urethra where it presents abnormally patent ?

Figure 9 represents a congerital liypospadias, in which the canal of the uretbra opens by two distinet apertures along the under surface of the corpus spongiosum at the middle bine. A prohe, $a a_{1}$ traverses both apertures. In such a case, if the caval of the uretbra were 1 leforite as far forwards as the meatus, and this latter in its normal position, the tivo folse openings should, if possible, be closed by an operation. In this instance the mentus and adjacent part of the urethral canal were imperforate. This Figure and Fig. 8 are as arrests in the process of median mion as respects the urethm, which part, in the early thetal condition, is dehiscent throughout its wbole length alung its inferior median line.
Figore 10. -The urethra is here represented as having a false opening on its under surface behind tbe frewum. The perforstion wis caused by a vencreal ulecr. The meatus and uretira anterior to the false aperture remuined perforate. Part of a bongic, a, applears traversing the false opening nud the meatiss. In this state of the organ an attemple should be made to close the false aperture pernamently:
Fioure 11 shows as state of the urethra similur to that of Fig. 10 , and the effect of the same canse. Part of a bougic, a_{1} is seen trawersing the false aperture, c, fiom the mentus before to the uretira, b, behind. In this case, as the whole substance of the corpus spongiosum was destroyed for half an inch in exteut, the Tuliacotian uperation, by which lost quantity is supplicd, is the measure most likely to succeed ins elosing the camal.

Figure 12.-Belind the mentus, and on the right of the fremum, is represented a perforation in the arethra, caused by u venereal ulver. The meatus and the fulse opening have rpproached rach other by the contraction of the eicatrix; in consequence of which, also, the aplux of the ghus is distorted towards the urethra; a bougie, a, c_{c}, introduced by the meatus occupies tbe urethril canal, b.

Figure 13.-Iu tbis figure the conal of the nrethra, a, appears turning upwards und opening at the median line behind the corona glandis, b. This state of the urethra was supposed to he cansed lyy a venereal nlece (?) peuctratiug the canal from the dorsmon of tbe peus. The proper direction of the camal might be restored by obliterating the fulse passage, provided the arethra remained perforate in the direction of the meatus. Lustances of this mature are congenital.
Figure 14 exhibits the form of a congenital cpispadins, in which the
urethru, $\{$, is seent to open oun the dorsal surface of the prepuce nt the ecdian line, b. The glans appears cleft aud deforned. The meatus is mocdian line, b. nsingl phace, c. The prepuce at the dorsum is in part
deficint at its deficient, nud bound to the glans aronnd the abnormal orifice.
Figure 15 represents in section a state of the parts in which the uretbra opened externally by one fistulons aperture, g, belind the scrotnon; and by another, h, in front of the scrotim. At the latter place the camal, k, beneath the peuis became imperforate for an inch in estent. Parts of catleters ne scen to cater the urethra through the fistulous openings, $h \mathrm{~g}$; and another instrument, i, is seen to pass by the proper meatus in to the urethra as fir as the point where this portion of the canal fails to commonicate with the othur. Tbe under part of the scrotum, $e c$, presents a cleft at the raphe corresponding witb the situation of the serotal septum. This state of the urinary passace may be the cficet either of congenital deficiency or of disease. When cansed by disease, the chicf fentures in its history, taking these in the order of their oecurrence, are, ls , a stricture in the anterior $p^{m a r t}$ of the urethra; 2ndly, a rupture of this canal hechind the stricture; 3rdly, the formation (on an alscess opening externally) of a fistulons commumication between the canal and the surface of some part of the perinacum; 4thly, the habitunl escupe of the urine by the false aperture; sthly, the obliteration of the canul to a greater or leos extent anterior to the stricture; (ithly, the parts situatel near the urethral fistula hocoue so consolidated and confused that it is difficult in some, and impossible in numy cuses to find the situation of the uretbra, cither by external exumination or by means of the eatheter passed iuto the canal. Tbe original seat of the stricture becomes so masked by the surrounding distase-and the stricture itself, even if found by any chance, is generally of so imparsable a kind-that it inust be confessed there are few operations in surgery more irksome to a looker-on than is the fruitless effort made, in such a state of the parts, by a hand witbout a guide, to puss perforee a blunt-pointed instrument like a catbeter into the hladder, In some instances the stricture is slightly pervions, the urine passing in suall quantity by the meatns. In others, the stricture is rendered wholly imperforate, and the canal either contraeted or nearly obliterated anteriorly through disuse. Of these two conditions, the first is that in which catheterisin may he tried with any reasonable hope of passing the instrument into the bladder. In tbe latter state, catheterism is useless, and the only means wbereby the nethra may be rendered pervious in the proper direction, is that of incising the stricture (on a grooved instrument) from the perinaum, and nfter passing a catheter across the divided part into the bladder, to retain the instrument in this situation till the wound and the fistula heal and elose under the treatment proper for this end.

Figure 16 .-In this figure the urethra, $c b$, appcars communicating with a sac, eee, like n scrotum. A bougie, c, is represented entering by the meatus, traversing the upper part of the sae, and passing into the membrunous part, b, of the urethra beyond. This ease, whieh was owing to a congenital malformation of the urether, exbibits a dilatation of the camal such as migbt be produced bebind a stricture, wherever situated. The urine, impelled forcibly by the whole action of the abdominal museles against the obstructing part, dilates the urethra behind the stricture, and by a repetition of such lorce the part gradually giclds more and more, till it attains a very large size, and protrudes at the prineum as a distinet fluctuating tumour, every time that an effort is made to void the bladder, If the stricture in sueh Ω case happen to eanse a complete retention of urine, and that a eathetcr eannot be passed into the bladder, the tumour sbould be punctured prior to taking ineasures fur the removal of the stricture.

Flgore 17 represents two close strictures of the urethra, one of which is situated at the bulb, and the other at the adjoining membranous part. These are the two situations in which strictures of the organie kind are said most frequently to occur (Hunter, Home, Cooper, Brodie, Phillips, Velpenu). False passages, likewise, ure mentioned as more liable to be ronde in these places than elsewbere in the uretlral canal. These oceurrenees-the disease and the accident-would seem to follow each other elosely, bike cause and consequenee. The frequeney with which false passares occur in this situation appears to me to be cliefly owing to the matomical fact, that the part of the urethra at and elose to the lulb is the inost. dependent part of the chive, 年 M F F, Fig, 6, Plate XLI., aurl hence, that points of instruments descending to this part from hetive pmsh foreibly nyainst the urethra, and are more apt to protrude through it than to have their points turned upwards and hackwards, so as to aseend the curve towards the neek of the hladder. If it be also true that strictures bappen here more frequently than elsewhere, this circmmstance will of course fivour the aceident. An additional canse why the
catheter happens to be frequently arrested at this situation and to perlorate the canal, is owing to the fact, that the triangular ligament is liable to oppose it, the urethral opening in this structure not happening to coincide with the direction of the point, b, of the instrument. In the Figure, part of a bougie, c c c, traverses the urethra through hoth strictures and ludges upon the enlarged prostate, $a a a$. Another instrument, b, after cutcring the formost stricture, oceupies a false passage which was made in the camal between the two constrieted parts.
Figure 18.-A small calculus, c, is bere represented lodging in the uretlira at the bulb. The walls of tbe urethra around the calculliss appear thickened. Bebind the obstructing body the canal, a a, has liccome ddated, and, in frout of it, coutracted. In sone instances the calculus presents a perforation through its centre, by which the urine escapes. In others, the urine makes its exit hetween the calculns and the side of the urethra, which it dilates. In this latter way the foreign body becomes loosened in the canal and gradnally pushed forwards as far as the incatus, within which, owing to the narrowness of this aperture, it lodges permanently. If the calculus forms a complete obstruction to the passage of the urine, and its removal camot be effected by other means, an incision should be made to effect this object.

Figere 19 represents the neck of the hladder and neigbbouring part of the uretlura of an ox, in whicb a polypous growth, a, is seen attached by a long pedicle, b, to the veru montanum, and hlocking up the neek of the bladder. Small irregnlar tubercles of organized lymph, and tumours formed by the lacunx distended by their own secretion, their orifices being closed by inflammation, are also found to obstrnet the urethral canal.
Figure 20 represents the form of an old callous stricture, b, half an incb long, situated midway between the bulb and the meatus, a. This is perhaps the most common site in which a strieture of this kind is found to exist. In some instances of old neglected cases the corpus spongiosum appen's converted into a thick gristly cartilaginous mass, "several inches in extent," the passage here heing very much contracted, and chiefly so at the middle of the strieture. When it becomes impossille to dilate or pass the canal of such a strieture hy the ordinary means, it is recommended to divide the part by the lancetted stilette, but this implies that the stricture is passable. Division of the stricture, hy any means, is uo donbt the readiest and most effectual measure that: can be adopted, provided we know clearly that the eutting instrument engages fairly the part to be divided. But this is a knowledge less likely to be attained if the stricture he situated behind than in front of the triangular bgaraent.

Figure 21.-In this figure is represented a small calculus, b, impacted in and dilating the membranous part of the urethra,

Figure 22 cxhibits a lateral view of the museular parts whicb surround the membranous portion of the urethra and the prostate; e, the memhranous urethra emhraeed above and beneatb by the two parts of the compressor uretbre muscle; g, the levator prostate muscle; f, the prostate; d, the bulb; c, the corpus spongiosum; b, the corpus cavernosum; a, the symphysis pubis.

Figure 23.-A posterior view of the parts seen in Fig. 22; c, the urethra divided in front of the prostate; $g g$, the levator prostatie muscle, arising from either side of the puhic symphysis behind, and looping under the prostatic urethra; $d d$, the compressor urethia, arising from the ascending rami, $c c$, of the ischia, and enclosing the urethra between its fibres within the layers of the triangular ligament in front of the levator prostate; $h h$, parts of the obturator muscles; $k k$; the anterior fibres of the levator ani muscle; f, the triangular ligament enclosing between its layers the artery of tbe bulb, Cowper's glands, the membranous urethra, and the muscular parts surrounding this portion of the canal; $b b$, the pelvic fosein investing the levator prostate and the levator ani; a a a^{*}, the horizontal rami and symphysis of the pubie hones. The faet that the flow of urine tbrough the uretbra happens occasionally to be suddenly arrested, and this circumstance contrasted with the opposite fact that the organic stricture is of slow formation, originated the idea that the former occurrence arose from a spasmodic museular contraction. By many this spasm was supposed to he dne to the uretbra being itself museular. By others, it was demonstrated as being dependent upon the muscles wbich surround the memhranous part of the uretbra, and which act upon this part and constrict it. From my own olservations I have formed the settled opinion that the uretlira itself is not muscular. And though, on the one hand, I believe that this eanal, per se, never causes by active contraction the spasmodic form of stricture, I am fur from supposing, on the other, that all sudden arrests to the passage of urine through the urethra are solely attributable to spasm of the museles which cmbrace this canal.

COMMENTARY ON PLATE XLV.

THE VARIOUS FORMS AND POSITIONS OF STRICTURES AND OTHER OBSTRUCTIONS OF THE URETHRA-FALSE PASSAGES, ENLARGEMENTS AND DEFORMITIES OF THE PROST OF THE URETHRA-FALSE

mpedments to the passage of the ucine through the urethra may arise from different eauses, sueh as the impaction of a small calculus in the canal, or any morbid growth (a polypus, \&ce.) being situated thereio, or from an abseess whieh, though forming externally to the urethra, may press upon this tube so as eithe1 to obstruct it partially, by bending one of its sides towards the other, or completely, by smrounding the canal and eompressing it on all sides. These eauses of obstruetion may happen iu any part of the uretbra, but there are two others (the prostatie and the spasmodic) which are, owing to anatomieal cireumstances, necessarily eonfined to the posteriou twothirds of the canal. The portion of the urethra surrounded by the prostate ean alone be obstructed by this body when it has beeame irregularly enlarged; while the spasmodic stricture ean only happeu to the membranous portion of the uretbra, and to an inch or two of the eanal anterior to the bulb, these being the parts wbieh are embraced by musenlar' structures. The urethra itself not being imseular (ns I helieve), cunnot, therefore, give rise to the spasmodie form of stricture. But that kind of obstruetion whieh is common to all parts of the urethra, and which is dependent, as well upon the struetures of whielı the duct is uniformly eomposed, as upon the cireumstanee that inffammation may attael these in auy situa. tion and produce the same etfeet, is the permanent or organie strieture. Of this disease the forms are as various as the situations are; for ns certainly as it may reasonably be supposed that the plastie lymph effused on the mueons surfaee in an inflamed state of the urethra from any cause, does not give rise to stricture of any special or partieular form, exclusive of all others, so, as eertainly may it be inferred that, in a structurally uniform emal, inflammation points to no one partieular place of it, wbereat by preferenee to establish the organie stricture. The membranous part of the eanal is, however, mentioned as beiug the situation most prone to the disense ; but I have little doubt, nevertheless, that owing to general rules of this kind being taken for granted, upon imposing authority, many more serions crils (false passages, ©e.) have been effeeted by eatheterism than existed previous to the performance of this operation.
Figures 1, 7, 8, 9.-In these figures are represented various forms of organie stricture oceurring in differeut parts of the urethra. In a, Fig. 1, the mucous membrane is thrown into a sharp circular fold, in the centre of whicb the canal appears much eontraeted: a seetion of this stricture appears in a, Fig. 8. In b, Fig. 1, the camal is contraeted laterally by a prominent fold of the mucous membrane at the opposite side. In e, Fig. I, an organized band of lymph is stretched obliquely across the canal: this stricture is seen in section in a, Fig. 9. In d, Fig. 1, a stellate band of organized lymplh, attached ly pedicles to three sides of the urethra, divides the camal into three passages. In f, Fig. I, the canal is seen to be much contracted towards the left side by a crescentic fold of the lining membrane projectiug from the right. In c, Fig. I, the canal appears contracted by a circular membrane, perforated in the centre; a section of which is seen at a, Fig. 7. The form of the organic stricture varies, therefore, according to the three following circum-stances:-1st. When lymph becomes effused withiu the eanal upon the surface of the lining mucous membrane, and contracts arlhesions acioss the cenal. 2ndly. When lymph is effised external to the lining mem. hrane, and projeets this inwards, therelyy narrowing the diameter of the canal. 3rdly. When the outer and inner sides of a part of the urethra are involved in the effised organizable matter, and on contracting towards eaeh other, encroach at the same time upon the ealiber of the canal. This latter state presents the form whieh is known as the old eallous tongl stricture, extending in many instances for an inch or more along the urethra. In cases whero the urethra becomes olstrineted hy tough bands of substance, c, d, Fig. 1, which cross the caual direetly, the points of flexille catheters, especially if these he of slender shape, are apt to be bent upon the resisting part, and on pressure being contimed, the operator may be led to suppose that the instrument traverses the stricture, while it is most probably perforating the sulstance of the nretlura. But in those cases where the diameter of the canal is circularly contraeted, the stricture generally presents a conical depression in front, which, receiving the point of the instrument, allows this to enter the
central passage unerringly. A strieture formed by a creseentie septunh, sueh as is seen in, l, f, Fig. 1, offers a more effectual olstacle to the passage of a eatheter than the circular septum, like, o, c; for that of the latter kind may le direetly entered, while that of the former kind camot be sio if the catheter completely fills the canal of the urethra.
Figure 2.-In this there are seen three separate strictures, a, b, c, situated in the urethra, anterior to the bulb. In some cases there arc many more strietures (even to the number of six or seven) situated in various parts of the uretha; and it is observed that when one complete strieture exists, other slight tightnesses in different parts of the cumal frequeutly attend it. (Hunter.) If, however, it is implied by this observation that one stricture is the eause of others, the reason is not olvious. When several strietures oceur in various parts of the nrethra, they may occasion even more diffieulty in passing an instrument than if the whole canal between the extreme eonstrictions were uniformly uartowed,

Figure 3.-In this the canal is constricted at a point midway hetween the bullb and glans. A filse passage, c, has been made under the uretbra, subcutaneously, by an instrument which passed out of the canal at the point, a, anterior to the strieture, and re-entered the caual at the point, b, anterior to the bulb. When a fulse passage of this kind lappens to be made, it will beeome a permanent outlet for the urine, so long as the strieture remains. For it can be of no avail that we avoid re-opening the auterior perforation by the catheter, so long as the urine, prevented from flowing by the natural eanal, enters the posterior perforation. Measures should be at onee taken to remove the stricture. A eathetur sloould he passed along the natural eanal, if possible, and retained there until, hy compression or other means, the false passage be obliterated. But this is a result not in auy suel case readily attainable, and least so when the false passage is of long standing; for if the urine effused las not, in the first instance, eaused influmuation and abscess, followed by the establishment of a fistula, the part, from being frequently and foreibly distended by the fluid, forms a subentaneous bag, which beeomes lined by a kind of nueous membrane, the surfaces of which canuot be easily rendered adherent. An instance of this nature has cone under my notire, which, from its large size and form, resembled a serotum, and contaiued a calculous deposit.

Figure 4.-The stricture, a, appears midway between the bulb and glans, the area of the passage through the stricture heing sufficient only to admit a bristle to pass. It would seem almost impossible to pass a eatheter throngh a stricture so close as this, uuless by a laceration of the part, combined with dilatation.

Figule 5.-I wo strictures are represented here, the one, b, close to the bull, the other, a, an iuch and a lalf anterior to this part. In the prostate were seen irregularly-shaped abseess pits, cominunicating with each other, and projecting upwards the floor of this hody to such a degree, that the prostatie canal appeared nearly obliturated.
Figcues $6,6^{*}$.-Two strietures are here shown, situated-the one at the bullh, the other immediately in front of it.
Figure 10.-Two instruments, b, c, have uade false phssages beneath the mucons membraire, in a ease where no stricture at null existed; the resistance which the instrumeuts encountered in pasing ont of the canal having been mistaken, no doult, for that of pasing through a elose stricture. The ducts of the nucous follicles were in chis case much dilated, and their orifices very patent; and probably the accitent illustrated wns owing to the point of a catheter having entered one of them.

Frevise 11.-A bougie, d, d, is seed to perforate the urethra anterior to the stricture, c, situated an inch hehind the glans, and after traversing the substance of the left corpus eaveruosum, \langle, for nearly its wbole length, enters the neek of the bladder through the left lobe of the prostate. The whole length of the urethra was in this ease inordinately dilated posterier to the stricture. It is remarked that the origin of a false passuge is in general anterior to the stricture, wherever situated. It may, however, oecur at any part of the camal in which no stricture exists, if the hand that impels the instrument be not guided by a true knowledge of the form of the urethra; and perlaps the accident hnppening from this eause is the more general rule of the two.

Figure 12.-In this case an instrument, eo e, after passing berieath part of the lining membrane, $c r$, anterior to the bulb, penetrates a, the right lobe of the prostate. A second instrument, $d d$, penetrates the left lobe. A third smaller instrument,$f f$, is seen to pnss ont of the urethra anterior to the prostate, nnd after transfixing the right vesicula seninalis, g_{1} external to the neck of the bladder, enters this viscus at a point behind the prostate. The resistance which the two larger instruments meet with in penetrating the prostate, made it seem, perlaps, that a tigbt stricture existed in this situation ${ }_{1}$ to match which the smaller instrument $f f$, was afterwards passed in the course marked ont.
Figure 13. -Two instruments appear transfixing the prostate, of which body the three lobes, a_{1}, b, c_{1} are much entarged. The instrument, d_{1} perforates the third lobe, a, whide the instrument, c, penetrates the right. lobe, c, and the third lobe, a. This aecident occurs when instruments not possessing the proper prostatic beud are forcibly proled forwards against the resistance at the neek of the bladder. In another case, two bongies were seen to enter the upper wall of the urothra, anterior 10 tbe prostate. This aecident happens when the handle of a rigid curved instrument is depressed too soon, with the abject of mising its point over the enlarged third lobe of the prostate.
Fegure 14.-The prostate, $a b$, is here represented as thimed in its lobes before and belind. The lower part, b, is dilated into on poueh projecting back wards, belind ind benenth the neek of the bladder. The pouch was caused lyy the points of misdirected instruments having been masly forced against this part of the prostate.
Fleure 15. The prostate, a a, is here seen to be somewhat more cullarged than natural. A tubercle, $b_{\text {, surmonnts the posterior part of }}$ it, and blocks nu, the vesienl orifiee. Catheters introduced by the urethra for retention of mine caused by the tubercle, have ladd their points arrested at the bulb, and on being pushed forwards in thi direction, have dilated the bulb into the form of a pouch c c. The sinus of the bulb being the lowest part of the curve of the urethra, is therefore very liable to be distorted or perforated ly the points of instruments ileseending upon it from above and before. When a stricture exists inmediately behind the bulb, this circumstance will of course favour the ocenrrence of the accident. Neither in this case, however, nor in that of Fig. 14, did an organie stricture exist.
Figurfs $16,17,18,19$ represent a series of prostates in which the third lobe gradually increnses in size. In Fig. 16, which shows the healliy state of the neek of the bladder, unmarkel by the prominent lines which are suid to bound the space named "trigone vesical," or by those which indiente tbe position of the "muscles of the ureters, " the "third lobe" does not exist. In Fig. 17 the third lobe appears as the uvula vesice, a. In Fig. 18 the nvula, a_{1} is increased, and under the unune now of third lobe is secen to contract and bend upwards the prostatic camal. The effect which the growth of the lobe, a, produces upon the form of the neck of the bladder becomes more marketr, and the purt presenting perforations produced by instruments, indicates that by its slupe it acted as an obstacle to the egress of the urine as well as to the entrance of instruments. A caleulus of irregular form was seen to lodge behind the third lobe, and to be out of the reach of the point of a souud,-supposing this to enter the bladder over the apex of the lobe. In lig. 19 tbe three lobes a, b, c_{1} are enlarged, but the third, a, is most so, nad while standing on a narrow pelicle attacbed to the floor of the prostate, completely blocks up the ncek of the bladder. On comparing this series of figures, it must appear that the third lobe of the prostnte is tbe product of discased netion, in so fin, at least, as an unnatural lypertrophy of a part may be thus desigmated. It is not proper to the badder in the liealthy state of this organ, and where it does manifest itself by increase it. pertorms no healthy function in the economy. When Home, therefore described this part as a new fact in anatomy, be
had in reality as little reason for so doing as he would have had in naming any other tumour a thing unknown to normal anatomy. Lan-. genbeck (Neue Bibl., b. i. p. 360) denies its existence in the bealthy state. Cruveilhier (Anat. Pathog,, liv. axvii.) deems it incorrect to reckon a third lobe as proper to the bealthy bladder.
Figure 20.-The prostatic canal, $a b_{1}$ is bent upwards by the enlarged third lobe, b, to such a degree as to form nearly a right angle with the membranous part of the canal. A catheter, $c c$, is seen to perforate the third lobe, and this is the most frequent mode in which, under such circumstances, and with instruments of the usual imperfect form, aceess may be gained to the bladder for the relief of retention of urine. "The new passage may in every respeet be as efficient as one formed by puncture or incision in nny other way." (Fergusson). When a catheter is suspected to have entered the bladder by perforating the prostate, the instrument slould be retained in the newly-made passage till such time as this bas assumed the cylindrical form of the instrument. If this be done the new passage will be the more likely to become permanent. It is ascertained that all false passages, and fistule, by which the urine escapes, become after a time lined with a membrane similar to that of the urethra. Figure 21.-The prostntic lobes a_{1}, b_{1} are uniformly enlarged ${ }_{1}$ and cause the corresponding part of the urethra to be uniformly contracted, so as closcly to embrace the eatheter, $c c$, occupying it, and to offer considerable resistance to the passage of the instrument.

Figure 22.-The prostate, $b c_{1}$ is considerably enlarged anteriorly, b, in consequence of which the prostatic canal appears even more borizontal than natural. The cathetcr, d, occupying the canal, lies nearly straight. The lower part, c_{1} of the prostate is much diminished in thickness. A nipple-sbaped ${ }^{1}$ rocess, a_{1} is seen to be attacbed by a pedicle to the back of the upper part, b, of the prostatc, and to net like a stopper to the neek of the bladder. The body, a, being moveable, it will be perecived how, whilc the bladder is distended with urine, the pressure from above may block up the neck of the organ witb this part, and thus cause complete retention, whicl b_{1} on the introduction of a catbeter, becomes readily relieved by the instrument pushing the obstructing body aside. In a ease of this nature, if the condition of the parts were ascertainable, would an operation, as that of lithotomy, be admissible? I have no besitation in putting this question under the consideration- $1 \mathrm{st}_{1}$ that an enlarged prostate is not a malignant growth; and hence that if the obstrueting part of it were removed, the reduction of its size may remain permanent; 2nd, that the part is no less surgically accessible than a calculus in the bladder, and, anatomically viewed, would require an incision even somewhat less likely to endanger important structures ; 3rd, that the distress occasioned by sucb a tumour is as great as that arising from the presence of a calenlusi and both are proved by all experience to be equally unsusceptible of removal by any known kind of medical or surgical trentment. On these grounds I would repeat the question, whether or not certain forms of enlarged prostate, sucb as are figured in Plates XLY., XLVI., and XLVII., would allow of their surplus parts being extracted by an operation of prostatotomy, as a stone is by lithotomy?

Figure 23.-The right lobe, $c b b$, of the prostate appears hollowed out, so as to form the sac of an abscess which, by its projection behind $b b$, pressed upon the forepart of the rectum, and by its projection in front, c, contracted the area of the prostatic canal, $a c$, and thereby caused an olstruction in tbis part. Not unfrequently when a catheter is passed along the urethra, for the relief of a retention of urine cansed by the swell of an abscess in this situation, the sac becomes penetrated by the instrument, and ${ }_{1}$ instead of urine, pus flows. The sae of a prostatic abscess frequently opens of its own accord into the neighbouring part of the urethra, and when this occurs it becomes necessary to retain a catheter in the neek of the bladder, so as to prevent the urine entering the sac.

Nore - The canse and the exact eeatof organio etricture of the urethrs are varionsly stated ly patbological nuntomists, nilthough its casuse and its seat mould seem to nilmit of os little dinputatiou, under the existing eridence of fuets, as its effect. Hone alescribes "n natural constrivtion of the urethum, directly luthod the bulb, which is probshly formed witho n jower of contruction to prevent," \&c. This is the part whieh he says is "uost linble to the dimense of stricture" (Sirictures of tho Urellira.) Now, if auy one, even among the swote-absurving wierassennists, can discorn the contractite strueture to which Hotue alludes, ho will certuinly prove thin anatomist to heo a markial excerption to those who, for the exforcoment of my ductrine, cun see any thing or phenomenon they wish to see, And, if Hunter wero as the minror from which Home mind was reflected then the ohservation nust to ingmed to the Gremt Original. Upon the queation, however, as to which is the most fiequent fest of stricture, 1 find that hoth these auntomists do not agree, Huster Htating that its nasul eent is just in front of tho bulb, while Home regrets, ns it were, to be obliged to difter from "lis iomertal friwob" and avers its scat to he au infuitugimal degree bohind the bulb. Sir A. Cooper agaiu, though argimg that the most uswal sithatiou of stricture is that mentioned by Huuter, names, as uext in order of frequency utrictures of the mentoratomes and prostutic parts of the arethm, "Falso pasences," obaerves Mr. Benjausin Phillips, "nre less freqinent hure (in the membranous pirt of the wothm) then in the budhous purtion of Elece canal. The reason of this must he immediacely evident : false prasages are urdinarily made is consequence of the difficulty expurienced in
the ondeavour to pass an instrument through tho strictured portion of the tube. Strichure is most frequently aented at the point of junction between the bnibons aud menbranous portions of tho canal; consequently, the false passago will bo usuilly anterior to this lntter point." (On the Viretira, its Discases, de. pr, 15.) Suel, being the subject under dispute, and such, the evideuce pro and contra, well, indecd, may it be asked, Does it not apprar strango how questions of this import should lywe ocerpised so muolz of the serious attention of our ereat predseessors, and of those too, who at tho present time form tho raaguard of the ranks of scienco 1 Owiug to what eircumatance sither mantomical or pethological, ean ono part of the uretlom ho more linble to the orgnio stricture than another? From ny owa strong arepicions, were the question put to me I would nuswer that if the membrauous part is provel by post-morem insestration to be ito nore usul seat, the is
 the poiut of a eatheter, orying to its being situptel bobe the tringuler ligaucut, und girt by muscular fibres and that the argio che

 muscles in spusmodic netion an orgauie strictmo nust exist while in trath, it is only now, the thrusting, bonding, contusine and mangling ufforts of rule uvgovenod ber Suel the thrusting, bonding, contusing, and mangling ciforts of a rude ungoverned hand. Sne
a haud certainly is not his which could "tatheterise the Fallopian tube for sterility."

deformities of the prostate-distortions and obstructions of the prostatic urethra.

Tue prostate is liable to such frequent and varied deformities, the consequence of diseased action, whilst, at the same time, its licalthy function (if it have nny) in the male body is unknown, that it admits at least of one interpretation whieh may, according to fact, be given of it-namely, that of playing a principal part in effecting some of the most distressing of "the thousnnd natural ills that flesh is hcir to." But heedless of such a singnlar explanation of a final cause, the practical surgcon will readily confess the fitting applieation of the interpretation, such as it is, and rest contented with the proximate faets and proofs. As physiologists, however, it behoves us to look further into nature, and seareh for the ultimate fact in her prime moving lave. The prostate is peculiar to the male body, the uterus to the female. With the exeeption of these two organs there is not another whieh appears in the one sex but has its analogue in the opposite sex; and thins these two organs, the prostate and the uterus, appear by exclusion of the rest to approach the test of comparison, by which (as I think) their analogy bocomes as fully manifested as that between the two quantities, $a-b$, and $a+b$, the only difference which exists depending upon the sultaction or the addition of the quantity, b. The differenee between a prostate and a uterus is simply one of quantity, such as we see existing between the male and the female breast. The prostate is to the uterus ahsolutely what a rudimentary organ is to its fully developed amalogue. The one, as being superfluous, is, in aceordance with nature's law of nihhl supervacaneum, nihil frustra, arrested in its development; and in sueh a elaraeter appears the prostate. This body is not a gland any more than is the uterus, but both organs being quantitatively, and henee functionally different, I here once more venture to eall down an interpretation of the part from the unfrequented bourne of comparative anatomy, and turning it to tend an interest to the aceompanying figures, even with a surgical bearing, I remark that the prostatic or rudimentary uterms, like a germ not wholly blighted, is prone to an occasional sprouting or incrense beyond its prescribed normal dimensions-a hypertrophy, in barren imitation, as it were, of gestation.

Fiouns 1.-The three lobes of the prostate 1, 2, 3, are, equally, much enlarged; and project prominently upwards around the neck of the luadder. They have so eontracted and distorted upwards the prostatic canal that an instrument, on being passed into the bladder, has transfixed the third Iohe.

Figune 2.-A globular exerescence, 1,1 , appears bloeking up the vesieal orifice, and giving to this the appearanee of a crescentic slit, corresponding to the shape of the obstructing body. The prostate, 3,3 , is enharged in hotb its lateral lobes. A small bougie, 5 , is plaeed in the prostatic caunl and vesical opening. Examples of prostatic disease of this form are not unfrequent; though in all of them the lateral prostatic labes are cnlarged, it is the nipple-shaped body which is the elhicf eause of impediment. The vesieal orifice is sometimes girt by a prominent ring of prostatic growth, to one border of which the globular anass is attached by a pediele more or less flexible and exactly fitting the outlet when it is pressed downwards. In other instances the enlarged lateral lobes of the prostate present masses projecting from their adjueent sides, and so fitted the one to the other that they act like a complete valvular apparatus which would become closed the tighter according to the increasing degree of eflort inade to void the bladder; and, from the form which they give to the prostatic eanal, bending it to the right side and to the left, would appear to render it impossible to pass a catheter into the bladder without lacerating or perforating them. In all such cascs the normal condition of the bladder is ehanged: it is either tluekened, faseieulated, or sacculated, and the ureters are much dilated.
Figune 3.-A cyst, 1,1 , is seen to grow from the left side of the base of the prostate, 3 , and to form an obstruetion at the vesical orificeits pedicle allowing it to be depressed under abdominal action ou the contents of the bladder, and to aet thus as a plug, closing suddeuly the outlet of the organ when the contents of this are being voided.
Figure 4.-A globular mass, I, of large size, occupies the neck of the bladder, and gives the vesical orifice, 2 , a erescentie shape, convex
towards the right side. The two lateral lohes of the prostate, 3, 3, are much enlarged. The urcters are dilated, and the walls of the bladder are thickened and fibrous. These rotund excrescences are not instanees of an enlarged third lobe; they are appendages of one or other of the
lateral lobes,

Figure 5.-The three lobes, $1,2,3$, of the prostate are enlarged and of equal size, moulded against each other in such a way that the prostatic canal and vesical orifice appear as mere elefts between them. The three lohes are encrusted on their vesieal sarfaces with a thick calcareons deposit. The surface of the third lobe, 1 , which has been half denuded of the ealeareous crust, 4 , in order to show its real character, appeared at first to he a stone impacted in the neck of the bludder, and of such a nature it certainly would scem to the toueh, on striking it with the point of a sound or other instrument \ln the prostatie urethra is sometimes found a ealculus elosely impreted; and which would arrest the point of a eatheter in the efiort to pass this into the bladder, and probally lead to the supposition that the instrument grated ayainst ir stone in the intcrior of the bladder; in whieh case it might be interred that, since the urine did not flow through the catheter, no rotention of urine (whiel the position of snell a ealculus cansed) existed. Instanees of calculi so situated have been found perforated in the centre, allowing of the egress of the contents of the bladder, and even of the introduetion of instruments into the viscus.
Figure 6.-The lateral lobes, 6, 6, of the prostate are irregularly enlarged, and the mrinary passage is bent towneds the right side, 4 , from the memhranons portion, 5 , which is central. Surmounting the vesieal orifice is seen the tuberculated mass, $1,2,3$, which, being moveable, ean be forced against the vesical oritiee, and thus produce complete reteation of urinc. In this ease, also, a flexible catheter would le more suitable than a metallic onc. In addition to the distortion of the canal upwards and forwards, to the right side or to the left, by an inervase of the third lobe or of one or other of the lateral lobes, the canal in some eases appoars divided by projeeting parts of the prostate into two or threc channels of lesser size, throngh cither one or other of whieh the catheter enn only be made with difliculty to enter the bladder, though the urine flows through all three. The length of the prostatic eanal is also very liable to a great increase, owing to the growh of a large irregular-shaped nass from the bases of the latemal lobes of the prostate, and projecting into the interior of the bladder. When this is the coudition of the part, the prostatic eanal becomes much more elongated than natural; and the instrument which is to relieve the rctention of urine is required to have a very long curve and to be of a length eorresponding with that of the eanal. While in some instances we find the prostatic canal divided into one or morc channels, in others it presents itself dilated into the form of a wide sac-a condition attributable cither to the forcive action of instruments or to the foruation of an abscess in the prostate, whiel from time to time (while a stricture exists in the nre thra) receives the urine under great pressure, and thus beeomes dilated. Figurn 7.-The prostate presents four lobes, $1,2,3,4$, of ncarly equal size. The posterior supernumerary lobes are gromths of the lateral lobes. Thcy block up the vesical orifice and prostatie canal, and project high into the bladder, the walls of which are hypertrophicd. An instrunent, 6 , has been made to transfix the lobe, 4. In this ense is well illustrated the truth, that both lobes of the prostate are equally liable to ehronic entargement. Home belicred the keft lube to be ottener inereased in size than the right. Wilson (On the Mats Urinary and Gonital Organs) mentions, in support of an opposite beliet, several instanees of the enlargement of the right lobe. No reason can, however, be assigned why one lobe should be more prone to lyypertrophy than the other, even supposing it to be matter of fact, which it is not. But the observations made by Cruveilhier (Anat, Pathol.), that the lobulated projections of the prostate always take place intermally at its vesical aspect, is as true as the manner in which he accounts for the fact appears somewhat plansilile:-The dense fibrous envelope of the prostate is sufficient to repress its irregular growth extermally.

Figure 8.-The prostatic canal, 1,2 is hent by the enlarged third Fioure 8. - The prostancends a dirwetion at a right angle with the membranous prit. of the uretlira. A catheter, 4_{1} failing to follow the canal lins perforatel $3_{1} 3_{1} 1_{1}$ the hody of the third lobe.
Froune 9.-The prostatic canal, $3_{1} 2_{1}$ is constricted and bent upwards hy 3_{1} the third lobe The blalder $\mathbf{r}_{1} \mathbf{1}_{1}$ is thickened and fibrons, and its base, 5 , is dilated in the form of a $s \Omega c_{1}$, which is dependent, and within which a calculns, f_{1}, rests. An instrument, 4 , enters the bladder through the third lohe, but does not touch the calculus, owing to the low position of this holly.
Figure 10.-Projecting from the bnse 3_{1} of the bladder appears a sule, 6,6 , of as large size ns that organ itself. In the has fond of the bladder a circular opening, 2_{1} appears leading to the sae which rested against the rectum. In a case of this kind the sac, occupying a lower level than the base of the blalder, will first become the recipient of the urine, and retain this fluid even after the bladder has been evacuated voluntarily or by menns of a catheter. If in sucb a state of the parts retention of urine ${ }_{1}$ from any canse c called for puncturation, it is evident that this operation would be performed with better effect by opening the depending sne through the howel than the bladder in any other situation.

Figure 11.-The lower half, $2,4_{1} 6_{1}$ of the prostate , having become $^{\text {on }}$ the sent of alseess a appears hollowed out in the form of a sac. This sac is separated from the bladder by a lorizontal septum, $2_{1} 2_{2}$, the mimgal base of the bladile $r_{1} 1,2$. The prostatic urethra between $5_{1} 2$, has becone vertical in reapect to the membranons part of the canal ${ }_{1} 7_{1}$ in consequence of the upward pressure of the abscess. The sac opens into the urethra, near the apex of the prostate, at the point 6; and a entheter $7_{1}, 7_{1} 7_{1}$ phsset along the arethra las entered the orifice of the sac $_{1}$ the interior of which the instrument thaverses, and the posterior wall of which it perforntes. The bladder coutains a large calculus, 3. The blatder and sac do not communicate, but the urethra is a camal common to both. In a case of this sort it becomes evident that although symptoms may strongly indicate cither a retention of urine, or the presence of a stone in the bladder, any instrument taking the position and direction of $7_{1} 7_{1}$ camot relieve the one or detect the other; and such is the direction in which the instrument must of necessity pass s_{1} while the sac presents its orifice more in a line with the membranons prot of thenrethra than the neck of the bladder is. The sac will intervene between the rectum and the bladder; and on examination of the parts through the howel, an instrument in the sac will readily he mistaken for being in the bladder, while neither a calculns in the bladder, nor this organ in a state of even extreme distension, can be detected by the touch any more than by the sound or catheter, If while performing lithotony in such a state of the parts, the staff occupy the situation of
$7_{1} 7_{1} 7$, then the knife, following. the staff ${ }_{1}$ will open n_{1} not the bladder ${ }_{1}$ which contnins the stone, but the sae, which moreover, if it happen to be filled with urine regurgitated from the urethra ${ }_{1}$ will render the deception more complete.
Figure 12.-The prostate , $_{1}, 3_{1}$ is greatly enlarged ${ }_{1}$ and projects high in the bladder, the walls of the latter, $1_{1} 1$, being very mueh thiekened. The ureters, d_{1} are dilated and perforations made by instruments are seen in the prostnte. The prostatic canal being dirceted almost vertically, and the neek of the bladder heing raised nenrly as high as the upper border of the pubic symphysis, it must appear that if a stone rest in the bas fond of the bladder, a sonnd or staff enniot rench the stone ${ }_{1}$ unless by perforating the prostate ${ }_{i}$ and if while the staff occupies this position, lithotomy be performed, the incisions will not be required to be made of a greater depth than if the prostate were of its ordinary proportions. On thic contrary, if the staff happen to have surmounted the prostate, the incision ${ }_{1}$ in order to divide the whole vertical thickucss of this body, will require to be made very deeply from the perineal surface, and this circumstance occusions what is termed a "deep perineum."
Tigure 13.-The prostate $6_{1} 6_{1}$ is enlarged, and its middle Jobe bends the prostatic caual to an almost vertien position, and narrows the vesieal orifice, 7 . The hladder $\mathbf{1}_{1} \mathbf{1}_{1}$ is thickened. The ureters $\mathbf{4}_{1}$ are dilated ${ }_{i}$ and a large sac, 2,2 , projects from the base and back of the bladder, and occupies the recto-vcsicnl fossa. The peritonæum is reflected from the summit of the bladder to that of the sac. The sac, equal in size and capacity to the bladder, communientes with tbis viscus by a small circular opening, 3_{1} situated between the orifices of the ureters. A catheter ${ }_{1} 5$, perforates the third lobe $6_{1} 6_{1}$, of the prostate, and enters the sae through the base of the hladder a little below the opening of conamunieation. In sucb a case a catheter occupying this position would ${ }_{1}$ while voiding the bladder tbrough the sac, make it seem as if it really traversed the vesieal orifice, and that no such deformity as the sae existed. Again if a stone occupied the bladder ${ }_{1}$ the point of the instrument in the sac could not detect it i_{i} whereas, on the contrary, if the stone lay within the suc, the instrument on striking the body here would give the impression as if it lay within the bladder.

Figure 14,-The walls, $I_{1} 1_{2}$ of the bladder, appear greatly thickened, and the ureters, 2 , dilated. The sides, $3_{1} 3_{1}$ of the prostate are thimed; and in the prostatic eanal are two calculi 4_{1} closely impacted. In such a state of the parts it would be impossible to pass a eathetcr into the bladder for the relief of a retention of urine, or to introduce a staff as a guide to the knife in lithotomy, $1 f_{1}$ however, the staft can be passerl as far as the situation of the stone, the parts may be held with a suffieient degree of steadincss to enable the operator to incise the prostate upon the stone.

Note-In venturige, as 1 havo none in the text, to stato, under the ghide of eomparisin, iny ilens of the siguification of the prostatic body as it presents itself in its normal and ulnormal cinditinns, the expursions used will not, I trust, be oxtended as to theirnesuing bogosd the linits I sssign to them. Though I bave every rerson to believe, thast hetrece the prostate of the mede and the uterng of the female, the same amount of aunloy exists, as between o eoceggeal ossiclo null the coroplete vertebral form elserwhoro wituated int the spinal scries, I nin as firr from regariling the two formere to be in all respects structumlly or functionally alike, as I am from entertainiug the like idea in requect to the two later. But still I maintain that betwcen a provtate amil n uterus, as hetweeu a cocorgeal bone aull a vertelma, the only diference which oxists is ono of quantiy, aul that hemco arises the funetional difference A prostate is part of a uterus, just na a coceygeal bone is part (the centrum) of o vertelma. That this is the absolnto signifiontion of the prontate I fromly believe, and were this the proper place, I could prowe it in iletail, by the infullitle rulo of amagogienl rectsoning. Joln Huater has obseryel that hie uso of the prostate was not suffieleutly hnown to conable 115 to furin a judgrent of that lad consequences of its disansed state. When the part becomues morbidly enlurgeal it of tho wecolonical implerliment to the pawage of urine from the liladider ; but from this circuestas a we caunot ransonnbly infer that, while of its normal bealthy proportions its speciul function is to facilitate the cgress of the urine,-for the female bladder, thongh wholly devoid of tho prostnte, purforms its own function perfectly. It appears to me thercfore, that doid of tho queatiou shoubl he, not-What is the ine of the prostate? but- Has it ary proper funetiong If tho former question puraled even the filibosughy of Hunter, it was propar function? question must bo answered in the negutive. Tho prostate lins no function proper to iter per *e. It in a thing alistinct from the urimary apparatus, ued fistinct livewer to itsolf, gemerativo organt. It may be lispertrophicel or stropliced or whet likewiso from the whelly desdroyed by nlacesa, sud yet nuitber of the functions of these two sostemsture, or will he impairet, if the part whilo disensed act not as an obstruction to theters of organs the priatrute is similur to all nompregaterl uterus. In form it is, like the In toxture
 unil the rectum, and only orerlups the unterior ant of the neek of the fon tho blachiler the thin portions of its latemil lobes, which meet ef the neck of the former organ by has no duyts proper to itself. Thuso ducts which are said to felowe. The prostate ducta) are merely inncous celle, nimilar to, and in serics with, thoto in oilher (prostatio urectiral lining membrame. The seminal ducts evideritly do not belone to it. The the the of tho prostate is nut such an uppenra in glandular. bodies generully to it. The texture which prowe what it is nots prove what it achanlly is - genemully. In sliort, the ficts Alevolophucut, aul as a siga of ilut all-encomprasing law in nature whe a uterus ntrested in its the term "maity in variety ;" which law, I conceive to be archetypal, phue quantity subjecterl
to degrading metamoryhosio-the lesser quantities being the varicties of form. Whilo the proskite, inorphologically comparell with the uterus, thus plainly radiates its 1 roper signification, we nany readily finil in the respective nppendages of both bodies, nalogies in number, form, nud relative position; and where, as to the two latter prartienlars, differenece exist, we are evabled ta nupreciuto the history of hevelopmental ilesign. It cannot be doubted that tho testicle and ovary moonalogous bodies, for originally they are subremal in tho loins, deriviug their blood-vessels directly from the sortas mid renn cara; and thence they desceuil, tho former to pass thuough the nblominal rilgs to the scrotum, tho lutter into tho pelvis. Notwithstamding this differeues as to position, we way real the amologies between the following-namell parts:-The was defirens, as rejresentel by the degcuented cord (romud ligancitit) of the owary-tho Eallopinu tube as the uneoiled represcutative of tho vesieula scminalis, aud as instancing, by its jaggell fimbrinted end, a dissevernment from the uterus, wherely is oceasioned that siogle point in the body at whiels a nucons joins a serons, wherevy is ocasioned that sigge point in the body at whieh a nucons joins as serons membrano, and deprives the poritonemm of tho ehumeter of a shat 530
-tho romnd liganent of tho uterns as the persistent atrengthened ropmescutative of the fetal gubermanculun testin-and tho peritonmal process (cannl of roprescutntive of the fetal gubermenlun testin-and tho paritoumel process (canal of Nuel) which pro-
trades with the round ligameut, na representing persistently the sclfsame coudition of the trudes with the round ligament, an representing persistently the selfsame coudition of the nuale inguinal camil prior to the alesceut of the testicle to the ecrotum. Of the correctness
 truth who anw the analogy between the swiming. bladder of a fish unil the luman lung. Aull for that value which (howover small) my intorprotation of tho prostate, as a point of knowledge, hus, let it stand. It will last, perlops, till sule timo as the mieroscopists slual discover in tho "secretion" of the prostate somo species of mamikins, sueli nas may pair with thoso which they term "spormatozos" Amil tho same facts which I have mentioned in proof of the prostate uot boing a gland are those which, as it seens to me, give evilenoe that the prostate alone is that body hetween which and the uteras nuy foll elnameter of hontology can bo rensomably grauted to exist. Witb regard to that little memplimons recess described by Morgngai as situatell botween tho prostatic loles, and opeuing ns the sirus pocularis within tho sides of the verue montamum-and which Weber cymododes, as reproscontius the rike named africulus virilis, and Ackerman namell uterus cyardes, as represchtily the rudimentary uterus in tho wule,-there woull netually rupen to be uo moro licuce for so designating the purt than thewe would bo for maning the liming nembrane of the uterus as the utcros complete. But let us in idea (ns oceasionally it is how fin these this numbranous resselo hetween the prostatic lobes, nud then consider in how fur the homalogy het ween a proatate mud a uterus is rendered soore evident. Then have wo not a puostatic interior, as wo see the uterino intorior, with a amilar hining to
 orgnns contering them in very mach tho enmo velativo prosition?

DEFORMITIES OF THE URINARY BLADDER.-THE OPERATIONS OF SOUNDING FOR STONE, OF CATHETERISM, AND OF PUNCTURING THE BIADDER.

Tie urinary bladder presents two kinds of deformity-viz., eongenital and pathological. As examples of the former, may be mentioned, that in which the organ is deficient in front, and has become everted and protruded like a fungous mass through an opening at the median line of the hypogastrium ; that in which the reetum terminates in the bladder posteriorly ; and that in which the fotal urachus remains pervious as an uniform eanal, or assumes a sacculated slarpe between the summit of the bladder and the umbilicus. The pathological deformities are, those in which vesical fistulæ, opening either above the pubes, at the perinæum, or into the rectum, have followed abseesses or the operation of puncturing the bladder in these situations; and those in which the walls of the organ appear thiekened and contracted, or thinned and expanded, or sacculated externally, or ridged internally, in consequenee of its having been subjeeted to abdominal pressure while over-distended witb its enntents, and while incrpable of voiding these from some permanent ohstruction in the uretbral eanal. The bladder is liable to become saeculated from two causes-from a hernial protrusion of its mucous membrane through the separated fasciculi of its fibrous coat, or from the cyst of an abseess whieh has formed a communication with the bladder, and received the eontents of this organ. Sacs, when produeed in the former way, mny be of any number, or size, or in any situation; when eaused by an abscess, the sac is single, is generally, formed in the prostate, or corresponds to the base of the bladder, and may attain to a size equalling, or even exceeding, that of the hladder itself. The sac, however formed, will be found lined by mucous membrane. The cyst of an abseess, when beeome a recipient for the urine, assumes nfter a time a lining membrane similar to that of the bladder. If the sac be situated at the summit or back of the bladder, it will be found invested by peritonmum; but, whatever be its size, structure, or position, it may he always distinguished from the bladder by being devoid of the fibrous tunie, and by having but an indirect relation to the vesical orifiee.
Figure 1.-The lateral lobes of the prostate, 3,4 , are enlarged, and contract the prostatic eanal. Behiud them the third lobe of smuller size is divided into two parts, 6,6 , occupies the vesieal orifiee, and completes the obstruction. The walls of the bladder have hence become fuscienlated and saceulated. One sac, 1, projects from the summit of the bladder; another, 2, containing a stone, projects laterally. When a stone oecupies a sae, it does not give rise to the usual constitutional symptoms as indicating its presence, nor ean it be always detceted by the sound. But should the stone be of sucb n size nnd form as to project its point into the interior of the bladder from out the sac, and that the point of the instrument alights grating upon it, the case might be mistaken for a stone free in the bladder"; when, if lithotomy were undertaken, the consequent failure of that operation may be readily inferred.
Figure 2.-The prostate, 10, 11, is greatly enlarged, and forms a narrow ring around the resicnl orifice. Through this ring an instrument, 12, enters the bladder. The walls of the bladder are thickened and saceulated. On its left side appenr numerous sacs, $2,3,4,5,6,7$, 8 ; and on the imner surfice of its right side appear the orifices of as many more. On its summit another sac is formed. The ureters, 9 , are dilated. The symmetrical sacculation in this case illustrates what is to be noticed of fig. 5 ; but here the large number of sacs is owing to the resisting fasciculi of the fibrous eont of the bladder unultiplying the places where the yielding mucous coat could protrude between them, and become invested by the serous.
Figure 3.-Four calculi are contained in the bladder. This organ, thickened and fasciculated, is divided by two septa, 2,4 , into three compartments, cach of which, $1,3, \mathbf{5}$, gives lodgment to a calculns; and another, G, of these bodics lies impacted in the prostatie camal, and becomes a complete bar to the passage of n eatheter, unless by heing foreed backwards by that instrument, wbich the septa would not readily permit. Supposing litbotomy to be performed in an instance of this kind, it is probable that, after the extraction of the calculi, 6,5 , the two upper ones, 3,1 , would, owing to their being embedded in the walls of the bladder, escape the forceps; or should the point of that instrument happen to touch them, and a trial be made by it to extract them, both
the septa must inevitably be torm and the lining mucous membrane stripped from the bladder:
Fraure 4.-The base of the bindler appears dilated into a large uniform sac, and separated from the upper part of the organ by a eircular horizontal fold, 2,2 . The ureters, 3,3 , are also dilated. The left ureter, 3,4 , opens into the sac below this fold, while the right ureter opens above it into the bladder. In all cases of retention of arine from permanent obstruction of the urethra, the ureters are genemlly found more or less dilated. Two circumstances eombine to this effect: while the renal secretion continues to pass ints the ureters from above, the contents of the hadder under abdominal pressure are forced regurgitating into them from helow, through their orifiecs. But the distended intestine-form of the ureters would appear to be generally owing to this simple physical eause: while the bladder is, from obstruction, habitually full of the mine, and cannot contain more, the ureters, continually reeeiving that fluid from the kidneys, must themselres beeome the retentive recipieuts of it , and increase tbeir capacity aceordingly.
Figure 5.-The bladder appears symmetrieally saceulated. One sac, 1 , is formed at its summit; others, 3,2 , project laterally; and two more, 5, 4 , from its loase. The ureters, 6,6 , are dilated, and enter the bladder between the lateral and inferior sacs. Tbe bladder in this condition of symmetry is a good illustration of the uniform equable force of abdominal compression; but an uniform struetural state of the orgnn is also necessary to effect it, so that one part does not more strongly resist eompression (the hhadder leing distended) tban another.
Figure 6.-Two sacs appear projecting on either side of, 4 , the base of the bladder. The right one, 5 , contains \approx calculus, 7 ; the left one, 6, of larger dimensions, is enpty. The rectun lay in eontact with the base of the bladder between the two saes. The prostate is enlarged and its canal obstructed. In this instanee of saceulated bladder that organ did not appear abnormally fibrous, proving that hy no action of its own to overcome the retention of urine, but by abdomiual superineumbent pressure, the sacs were produced; and proving, therefore, that the action of the bladder in voiding its contents is almost nil, and mainly owing to abdominal force.
Figure 7 .-Two saeculi, 5, 6, appear projecting at the middle line of the base of the btadder, between the vasa deferentia, 4,4 , and behiud 1,2 , the prostate, in the situution where the operation of puucturing the bladder per anum is recommended to be performed in retention of urine. These saes, in a distended state of the bladder from inethral obstruction-they themselves being also tense and distended-could not be distinguisbed by examination per anum from an enlarged prostate. In eaeh sac was contained a mass of phosphatic calculus. This substance is said to be seereted by the umeous lining of the bladder, while in a state of cluronie inflammation; but there seems nevertbeless very grod reason for us to believe that it is, like all otber calculous matter, a deposit from the urine.
Figure 8.-The prostatic canal is eontracted by the lateral lobes, 5,5 ; resting upon these, nppear three calculi, $2,3,4$, which nearly fill the bladder. This organ is thickened and fasciculated. In cases of this kind, and that last mentioned, the presence of stone is readily ascertuillable by the sound.

Figure 9.-Two large polypi, and many smaller ones, appear growing from the mucous membrame of the prostatic urethra aud vesical oritice, and ohstructing these parts. In examining this case during life by the sound, the two larger growtbs, 2,3 , were mistaken by the surgeon for calculi. Such a mistake uight well be excused if thes happened to be encrusted with lithie matter, in which state, if bitbotony were bad recourse to, tbeir extraction by that operation would, owing to tbeir pedicellate form, be readily effected. But not being in that condition, it might seem impossible for their true nature to be known, or that they were of any otber kind than an enlargement of the third prostatic lobe.
Figure 10.-The tbree prostatic lobes, 4, 5, 6, are enlarged, and appear contracting the vesical oritice. In the walls of the bladder are cmbedded several small calculi, $3,3,3,3$, which, on being struck with the convex side of a sound, might give the impression as though a singhe
stone of large size existed. In performing lithotomy, these calculi would not he within rench of the forceps.

Figure 11.-The prostate is enlarged, its canal is narrowed, and the bladder is thickened and contracted. A calculus, 1, 2, appears occupy. ing nearly the whole vesical interior. The incision in the neck of the bladder iu lithotomy mist necessarily be extensive, to admit of the extraction of a stonc of this size, for in truth it does not appear (as stated by the advocates for sparing incision of the prostatic) that that part is more distensible than lacerable, and very prohahly in all cases of lithotomy they are only substituting laceration for incision,-the former being the worse mode of the two.
Figune 12 represcuts, in scction, the relative position of the parts coneerned in catheterism; the form and dimensions of the bladder in its collapsed, semi-distended, and inordinately distended states; and the operation of puncturing the organ in the latter condition ahove the pubes, or throngh the rectum. In performing catheterism, the patient is to be laid supine; his loins are to be supported on a pillow; and his thighs are to be flexed and drawn apart from ench other. By this means the perineum is bronght filly into riew, and its structures are made to assume a fixed relative position. The operator, standing on the patient's left side, is then to raise the penis so as to render the urethra, 12, as straight ns possible between the mentus and the bulb. The urethra then assmmes the form and position of $a, 10$. The instrument (the concavity of its enrve being turned to the leff groin) is now to be inserted into the meatus, and while being gently impelled through the canal, the urethra is to be dram forwards, by the left hand, over the instrument. By thus stretching the urethra, its sides are rendered sufficiently tense for facilitating the passage of the instrument, and the orifices of the lacune hecome closed. While the instrument is being passed along this part of the canal, its point should be direeted fainly towards the urethral opening, 9 , of the triangular liganent, which is situated an inch or so below the pubic symphysis, 13. With this object in view, we should avoid depressing its landle as yet, lest its point be prematmely tilted up, and rupture the upper side of the urethra anterior to the ligament, As soon as the instrument has arrived at the bulb, 10 , its further progress is liahle to he arrested, from three causes:-1st, This portion of the canal is the lowest part of its perinaal curve, $a, 10,8$, and is closely embraced hy the midale filures of the accelerator urine muscle, which, always becoming spasmodically contracted on the unaceustomed introduction of a foreign body, completely' obstructs the urethra, hy compressing the bulh like a pad agninst it. This compression, it appears to me, gives the anatomical signifiention and the pbysiological use of the bulh, Its presence nllors grasp to the accelerator, and renders that muscle effective in suchwise as its name implies. The urethra is as the cylinder of a syringe, the hulb is its piston, and the muscle is the inpelling force to accelerate the expulsion of the urethral contents which remain tbere when other forces which convey those contents thither are expended. The bulb, therefore, in the grasp of the accelerator, and compressing the urethral canal, may be regarded as a eause of naturnl stricture, always, while the point of a catheter tonches the part; and the instrument, if rudely encountering such constriction, is liable to make a filse passage, even though no abnormil organic stricture exist. 2nd, It is immediately succeeded by the commencement of the membratous uretbra, which, while being naturally narrower than other parts of the canal, is also (as is said) the more usual sent of organic stricture, nud is subject moreover to spasmodic constriction hy the fibres of the "compressor urethre" hetween the layers of the triangular ligament. 3rd, The triangular ligament is behind it, and if the urethral opening of the ligament he not directly entered by the instrument, this will bend the urethra against the front of that dense structure. On ascertaining these to he the causes of resistance, the instrument is to be withdrawn a little in the eanal, so as to induce the relaxation of the muscles, and to admit of its heing readjusted for engaging precisely the opening in the triangular ligament.

As this structure is attached to the membranous urethra which perforates it, both these parts may be rendered tense, by drawing the penis forwards, aud thereby the instrument may he guided towards and through the aperture. The instrument having passed the liganent, regard is now to he paid to the direction of the prostatic portion of the canal, 9,8 , which is upwnids and backwards to the vesical orifice, $8, d^{*}, 8$. In order that the point of the instrument may frecly traverse the urethra in this direction, its handle, a, requires to be depressed, b, slowly towards the perinemm, and at the same time to be impelled steadily back in the line d, d^{*}, throngh the middle of the pubie arch, with which the prostatic urethra corresponds. If the third lobe of the prostate happens to he cnlarged, the vesical orifice will accordingly be more elevated than usual. In this case, it hecomes necessary to depress the instriment to a greater extent, c, than is otherwise required, so that its point, c, may surmount the obstacle. But since the suspensory ligament, 14 , of the penis, 11 , and the perimeal structures prevent the lundle of the catheter heing depressed beyond a certain degree, whieh is insuficient for the ohject to be nitained, the instrument slould possess the prostatic curve, c, c, compared with c, b. There can he no doubt that a moderately and uniformly curved instrument is (judging from the form of the urcthra) that which is best suited for easy introduction into and through the camal. As little doubt can there be that a straight intlexihle instrument, d, d^{*}, is one which is wholly inadapted for the operation, whether the parts be in their normal or ahnormal state. But an instrumeut with too abrupt a curve is not less difficult of passage the a straight one, for while the latter in passage is never according to direction, and in the whole canal, the former becomes too soon in that hending the part prematurely.

In the event of its being impossible to pass a eatheter hy the urethra, in eases of retention of urine tbreatening ruptnre, the base or the summit of the bladder, according as either part may he reached with the greater safety to the peritonaeal sac, will require to he punctured, If the prostate he greatly and irregularly enlarged, it will be safer to puncture the bladder above the pubes, and here the position of the organ in regard to the peritonxum becomes thie chief consideration. The shape of the bladder varies very considerably from its state of collapse, 4, 4, to those of mediate, $1,2,5$, and extreme distension, $3,3,5$. This change of form is chiefly effected hy the expansive elevation of its upper half, which is invested hy the peritonæum. As the summit of the bladder falls helow, and rises above the level of the upper margin of the puhic symphysis, it enrries the peritoneum with it in either direction, While the bladder is fully expanded there occurs an interval between the margin of the symphysis pubis and the point of reflexion of the peritonxum, from the recti muscles to the summit of the viscus. At this interval, close to the puhes, and in the median line, the trocar may be safely passed through the front wall of the bladder. The instrument, h, h, should, in all cases, he directed close over the upper horder of tbe pubic symphysis, downwards and backwards, in a line pointing to the hollow of the sacrum, so as to insure its passage into the bladder with safety to the serous membrane. The instrument, g, g, poiuts to the interior of the organ, even while partially filled. The instrument, i, i, though direeted horizontally backwards, enters the summit of the bladder in its state of inordinate distension. For puncturing the fundus of the bladder the instrument, e, c, (when the position and size of the prostate have heen ascertained) should he passed through the forcpart of the lower end of the howel into the hladder, at about half an inch hehind the base of the prostate, and exactly in the median line. Here it would pass free of and hetween the seminal ducts, $f, 7$, converging to the prostate before, and would also be free of the end of the recto-vesical serous pouch, $5,5,6$, behind. Puncturing the bladder is, however, at present, an operation which improved eatheterism almost supersedes.

Note-On convidering the cases of physical impediments to the pasange of urine from tho vesical reservoir through the urectlaral coniunit, it seoms to me as if these were sulficient to necount for the forsastion of atowe ins tho bladder, or ans other part of the urinary apparatys, withont tho netecssity of asoribing it to a constitutionnl diveaso, snch so that
nowed isxuned tho lithio diathessin hy the humsoral pathologista.
The urinary apparntus (consisting of tho keidnega, wreters, hladder raud mretiru) is known to to the prixripal cnuluctory for eliminating and voiding the detritus forned by the eontinull decay of the parts comprising the animal economy. The urine is this detritiss in x stato of eolstion. The conqponents of urine are chemically similar to those of calculi, and as tho complonents of the one vary neccorling to tho disintegration occurring at tho time in the vital alcmbic, so do those of the other. While, thereffore, a calenhns is only ns wrino precipitusted aud solidibicel, und this fiwid ouly as calculous nimeter anspended ins a
 tural disint ogrtion is constanat aud goneral in opention. As every' indivilual, therefore, may he mid to voin lhy ly day a disolvel celleulus, it mant roilow that its form of preoiphition within souse pmrt of the uriury ulyxmatus nlose constitutes the disense, siuce in
this form it eannot be passel. On viewing the sulject in this light, the question that springs directly is (while tho lithie dhathesis is eomunon to ;ndividunis of all ages amil both Hexes), why the lithic selineent slowtd prescat in the form of concronsout in somo and not in others ? Tho principal, if not the sole, causo of this secons to me to be obstroction to tho free egress of the urine along tho matural pussuge. Aged indiviluals of the male sex, in whom tho prostate is prone to edlargenent, and the mrethra to organic stricturc, aro 1eace moro sunhiject to the formationof stonc in the bladder, thnn youths, in whons theso crusess of obstruction ane bess frequent, or than fomales of niy ngo, in whom the prostate is absent, and the uretlim simplo, short, readily dilatable, nad seldom or never strictured. Whels an ohstruetion exists, lithic coneretions take phace in the urinnry npparatus in the samo manner as sedinaentary 1 imrtieles colore or crystallize elsewhere. Tho wrimo beconing 1 wut mp nud stagnimt while chargel with saline matter, cither doposits this arowud a nucless iutrodnecd into it, or ns a surplus when the menstruum is insmficient to sugyend it, The most deponyling part of the bladler is that whero lithice coucretions tako placo ; and it a maceulus exisit here, or anywhero so ns to becomo a recinicnt for tho matter, this circunastonce will favour the formation of stone.

THE SURGICAL DISSECTION OF THE ILIAC AND FEMORAL REGIONS. DELIfATION OF THE EXTERNAL ILIAC AND FEMORAL ARTERIES.

Timoven the middle of the groin, over the onter third of the horizontal rmus of the pubic bone, and comparatively superficial, the prineipal bloodvcssels and nerves are transmitted to the corresponding limb. The main artery of the lower limb, extending from its aortic origin throughout, frequently becomes the subject of a surgical operation, iu respect to its several portions, each of which is usually deseribed as limited, according to the extent of the region which it traverses. But, as in examining any one of those parts irrespective of the others, many facts of ehief surgical importance are thereby obscured and overlooked, I propose to consider the vessel as a whole, continuous from the aorta to where it appears in the poplitenl space. The gencral course and position of the inain artery may be deserilied as follows:-
The abdominal aorta usually hifurcates on the hody of the fourth lumhar vertebra. The level of the aortic bifureation corresponds with the situation of the navel in front, and the erista ilii laterally. The aorta is in this situation horue so far forwards by the lumbar spine as to oecupy an almost, central position in the cavity of the abdomen, and in the erect and supine posture is very nearly on the same plane with the symphysis pubis. If the abdomen were pierced in two lines, one extending from a little to the left side of the navel, horizontally hackwards to the fourth lumbar vertebra, and the other from inmediately over the middle of one crista ilii, transversely to a corresponding point in the opposite side, these lines would intersect at the artic bifureation. The two arteries, Λ, Λ, into whicb the aorta divides symnetrically at the median line, diverge from one another in their descent towards the middles of the two groins, and eaeh appears to pass almost straight to the popliteal space. As both vessels correspond in form and relative position, the deseription of one will serve for the other.
While the thigh is ahducted and rotated outwards, if a line he drawn from the navel to a point of the inguinal fold, midway between I , the anterior iliae spine, and r, the symphysis pulis, and continued thence to tbe imer condyle of the femur, it would indicate the genernl course of the artery, A c p. In this course, the vessel may be regarded as a main trunk, giving off at intervals large hranches for the supply of the pelvie organs, the abdominal parietes, and the thigh. Its accompanying vin, B E Q, lying for the most part close to its imner side, has the same direction as it, and exhihits corresponding branches. From the point where the artery leaves the norta, down to the inguinal fold,,J, it is within tbe aldomen, and here, therefore, all operations affecting tbe vessel are attended with more difficulty and danger than elsewhere in its course.
The artery of the lower limb, arising at the hifureation of the aorta on the fourth lumhar vertelira, descends obliquely outwaids to the saero-iliac junction, and bere it gives off from its inner side its first branch (internal iliac) to the pelvic organs. The main vessel is named common iliac, at the interval between its origin from the aorta and the point A, where it gives off the intermul iliac branch. This interval is very variable as to its length, depending either upon a high division of the artery itself or a low division of the aorta, or upon both eireumstanees, in which latter case it is extremely short-but it is stated to be usually two inches. The artery, c , continuing to diverge in its first direction from its fellow of the opposite side, descends along the margin of the true pelvis as far ns Poupart's ligament, J, over the os pulis, and heve it gives off, from opposite sides, its next principal branches, -viz., the epigastric and circumflex iliac. At the interval between the internal iline and those branches, the main artery, c , is mamed eaterual iliac; and the surgical length of this part is also liable to vary, in consequence of a high division of the common iliac or of the epigastric or circumflex iliac branelies arising from it higher up or lower down than usual. The main artery, after passing henenth the middle of Ponpart's ligament, next gives off the profundus liranch, P , to supply the thigh, of which it is the proper and elinef nutrient vessel; the other hranches of the conmon trunk being here few and of small size. This hranch generally arises at a point an inch and linlf or two inches helow the fold of the
groin, marked by Poupart's ligament; and hetween it and the ligament above, the main artery is named cormmon fenoral; but, practically considered, it will appear that this portion of the vessel is to be measured not by the ligament but by the situations of the origius of the hranches (circumflex iliac and epigastric), which, when arising ligh ahove that structure, shorten the clear length of the external iliac, and extend that of the common femoral, and when arising below the part (which they often do) have a converse effect in regard to those portions. Moreorer, those hraneles, when given oft from the main artery immediately ahove the ligament, and the profundus close to its lower border, leave scarcely an interval to which to apply the name common iemoral, and none at all when they arise together. From the point where the profundus hranch arises, down to the popliteal space, the vessel, e pr, reniains as an undivided trunk, being destined to supply the leg and foot, and is the femoral artery only in regard to situation. In this course, the artery is accompanied by the vein, BEQ, which, according to the region in which it lics, assumes different naince, corresponding to those applied to the artery. Both vissels may now be viewed in relation to cach other, and to the several structures which are in connexion with them.
The two vessels above Poupart's ligament are helind the intestines, and closely invested hy the scrous membrane. In the right iliac region they are immediately overlaid hy the ileo-cceeal part of the bowel; in the left side the sigmoid flexure of the colon rests upon them. The origin of the vena cava is close to the right side of the hifurcation of the aorta; and here both ressels are supported hy the lumhar spine. Each of the two arterics into which the norta divides has its accompanying $v c i n$ on its inmer side, but the common ilias part of the right artery, A, is scen to pass over the upper ends of both the veins, as these joining beneath it form the commencement of the vena cava. The exterual iliae part of each artery has its vein on its inner side. At the point where the artery gives off it internal iliac branch, the nreter, D, crosses it, and thence descends to the hiladder, while that hranch itself crosses the upper end of the external iliac vein in the same direction. The interual iliac branch subdivides in general so soon after its origin, is so deeply scated, is so complicated by the veius nccompanying its several brancles and congregating to join the external iliac veiu at its root, and is at the snme time in such close connexion with important organs, as to make no eall for surgical deseription.

The external iline ressels, in npproaching Poupart's ligament along the horder of the true pelvis, apply themselves to the inner side of the psoas muscle, and are invested and bound to their pluee hy the peritoneum, aud a thin process of the iline fascia. Some lymplatie hodies are here found to lie in the course of the vessels; forming a chain, continuous with those of the thigh, through the femoral canal, and are known, like those in the axilla, to cause vasenlar obstruction when they have become morhidly enlarged. The spermatic artery and rein, together with the genitocrural nerve, descend upon the psoas muscle along the outer border of the iliac artery. When arrived at Ponpart's ligament, the iliae vessels, EC, become much complicated hy their own hranches, and also hy the spermatic ressels and duct, as these are about to pass from the abdomen througli the internal inguiual ring. While passing benenth the middle of Poupart's lignment, the iliac artery, having its vein close to its immer side, rests upon the inmer border of the psoas musele, and in this place it may lie effectually compressed against the os pulis. While within the aldomen no nerve of any surgical importance is in apposition with the vessels. The anterior crural nerve, o , which in the iliac region is concealed between the psoas and iliacus muscles, and separated ly the former from the vessels, now comes iuto view, situated on the outer side of the artery. When the vessels, P, Q, have passed from beneath Poupart's ligament, the serous memhluane no longer covers them, hut the fibrous membrnae is seen to invest them in the form of a sleath, divided, ns already deserilied, into three compartments, of which the middle one reecives the rein; the outer one the artery; and the iuner one, which is named the femoral camal, is usually

FIGURE OF PLATE NLTILI.

A A. Right and loft common iline arteries- - B B, Fight nud loft cominon ilino veins.-

 $\overrightarrow{\mathrm{L}_{1}}$, Ponas misele supporting the spermatic vessils.- $-\mathbf{M}$, Interverteltral substance between
ocenpied by a lymphatie body, and is that which oecasionally gives egress to a hernia.

The femoral ressels in the upper third of the thigh traverse a trian gular space, the base of which is formed by Poupart's lignment, whilst the sides and apek are represented by the sartorius and adductor longas muscles, approaehing each other at the junction of the upper with the middle third of the thigh. In the undisseeted state of the part, the structures which bound this space ean in general be ensily recognised. A eentral depression, in lean suljeets, extends from the midalle of its base to its apex, and marks the eourse of the ressels. Nenr the middle of Poupart's ligament, the vessels are comparatively superficial, being supported forwards by the os pubis,-and here the artery may be felt pulsating; but lower down, as they approach the apex of the triangle, the vessels gradually become deeper, till the sartorius muscle inclining from its origin obliqualy inwards to the eentre of the thigh, at length overlaps tbem. The inner border of the sartorins mnscle nt the lower part of the upper third of the thigh, gnides to the position of the netery. Whilst traversing the femoral triangle, the ressels cnelosed in their proper shesth are corced by the fiscia lata, adipose membrane, and integument. In this plaee they lie imbedded in muels loose cellular and adipose tissue. The femornl vein is on the sume plane with the artery near l'oupart's ligament; lut from this place downwards through the thigh, the vein gradually winds from the inmer side to the biek of the artery; and when both vessels, supported by the adduetor muscles, pass under eover of the sartorins, they enter a strong fibrons sbently, v, whinch appears derived from the adduetor longus tendon, and stretching over them beeomes firmly attached to the eontiguous origin of the vastus internus muscle. The artery in this sheath approaches the shaft of the femur near its middle; and in this plaee it may be readily eompressed agninst the bone by the hand. The anterior crnral nerve, o, dividing into several muscular branelies immediately below Poupart's ligament on the outer side of the artery, sends one or two of them down over the fenoral sheath; and one of tbese-the long saphenus nerve-enters the sheath and follows the artery as far as the opening in the great adduetor tendon, through which that ressel passes to the poplitenl space. The nerve at the opening leaves the nertery and deseends subcutancously on the inner side of the knee, leg, and foot. The femoral artery, before it passes through this opening into the popliteal space, gives off its anastomotie branel, to ramify about the knee. The profundus branch springs from the outer side of the femoral artcry, usially at a distance of from one to two inches (seldom more) below Poupart's ligament, and soon subdiviles for the supply of the various museles on the front and back of the thigh. The femoral artery in a few instanees lias been found double, but, unlike the duplex state of the brachial artciy, the branclies of whicb become the radial and nlnar, those of the femoral artery re-unite into a single trunk in all those instances (as far as I know) which have been seen, previously to entering the poplitenl space.

The main artery of the lower limb may be exposed and tied in any part of its eourse from the aorta to the popliteal spaee. But the situation most eligible for performing such an operation depends of eourse upon circumstanees both anntomieal and pathological. If an anenrism affect the popliteal part of the vessel, or if, from whatever eause erising, it be found expedient to tie the femoral ahove this part, the place (as described by Searpa) best suited for the operation is that where the artery first passes nnder eover of the sartorius masele. For, eonsidering that the ressel gives off no important braneh (except the anustomotic and artieular, to ramify about the knee joint) destined to supply any part of the thigh or leg between the profundus branch and those into which it divides below the popliteal space, the arrest to direet circulation will be the same in amount at whiehever part of the vessel between thase two points the ligature be applied. But since the vessel in the situation specified can be reached with groater facility here than elsewhere lower down (where Hunter tied it); and sinee, moreover, a ligature upplied to it here will be sufficiently removed from the profundus branch above, and the seat of disease below, to produce the desired result, the ehoiec of the operator is determined aecordingly. The steps of the operation performed at tbe upper third of the thigh, where the artery is about to pass beneath the sartorius, are these: an incision of sufficient length-from tro to three inehes-is to be made over the eourse of the vessel, so as to divide the skin and adipose mem brane, and expose the fascia lath, throngl, which, being thin and trans. parent, the inner elige of the sartorius musele becomes readily diseernible. A veiu (anterior saphena) may be found to cross in this situation, but the internal saphena vein proper is not met with, as this vessel lies nearer the inner side of the thigh. The fascia having been next divided, the inner edge of the sartorius is to be turned aside, and now
the pulsation of the artery in its sheath will indieate its exaet position. The sheatl (that which is prolonged upon the vessel as a prodnetion of the transversalis fasein, and whieh here elosely invests it) is nest to be opened, for an extent sufficient only to earry the point of the ligature. needle safely around the artery, eare being taken not to injure the femorni vein, whieli is elose behind it, and also to exelnde any nerve which may be in contaet with the vessel. When the ligature has been applied, the aneurism is to be examined to know if its pulsation be completely arrested. If such be the ease, the singleness of the feluoral artery will be proved; but if the anemrisual motion still eontinue, then the duples stute of the vessel may be safely infered, and measures adopted aecordingly. A double femoral artery is however so rare an oecurrence (though, singularly enough, the first sulject I ever disseeted exhihited this very eondition), as to require $n 0$ further eomment.
If an aneurism affect the eommon femoral portion of the artery, the extcrual iliae part would require to be tied, beeause, between the sent of the tumour, however small this be, and the epigastrie and cireumflex iliae branches above, there would not be a sufficient interval ot the main vessel to nllow the ligntnre to rest "undisturbed;" and even if the nonemism arose from the femoral below the profundus brunch in the upper third of the thigh, or if, after amputation of the thigh, a sceondary homorrange took place from the femoral and the branelies of the profunda artery, a ligature would with more safety be applied to the external iliae part than to the common femoral; beeause of this lutter, even when of its elear normal length, presenting so small an interval between the epigastrie and profundus branches. In addition to this, it must be noticed, that oceasionally the profundus itself, or some one of its branehes, (external and internal eircumflex, \&e., arises as bigh m as Poupart's liganent, close to the origin of the epigastric and eireumflex iliae. But though mention is lere made thus admonitorily respeeting the appliention of a ligature to the main artery close below the origin of some of its prineipal branebes, as a eause of failure in the operation, I must eonfess, for my own part, that I rather follow precedent and eustoin than subscribe to the doetrine. For, judging of the matter on pure physieal prineiple, wbieh is implied when making use of the term "disturbanee" of a ligature owing to its linving the position above mentioned, I think that when we see the whole foree of the arterial eurrent impelled point blank against the tied end of the vessel, and continuing to be so until the period of complete organie closure and obliteration of its channel; if that foree be not suffieient cause to dis. turb the ligature, how enn the proximity of this to the distal side of the root of a large eollateral branch be so? Nay, does it not stand for reason that it wonld rather be a preventive to the occurrenee by diverting the direet current, and, in the exaet ratio of the size of sueh braneh, diminish that force which otherwise would take full effeet at the seat of the ligature wherever this happen to be applicd. Be this as it may, however, the reinark will not be wholly devoid of value if it lead to a eonsideration of prime importanee-viz., that in placing the ligature whenever praeticable on the main artery below a large branch, we add very matcrially to the ehances of maintaining the vitality of the member through the mediun of the collateral eireulation.

The cxternal iliae part of the artery, when requiring to be tied, may be renched in the following way: an ineision, eommeneing at the anterior superior iliae spinous proeess, is to be earried inwards parallel to, and above, Ponpart's ligament, as far as the outer margin of the internal abdominal ring. This ineision is the one best calculated for avoiding the epigastrie artery, and for not disturbing the peritonseum more than is necessary. The skin and the three abdominal muscles having been successively inciscd, the fibrous trausversalis fascia is next to be carefully divided, so as to expose the peritonæum. This membrane is then to be gently raised by the fingers, from off the adjacent parts of the ilineus and psoas museles, as fin iuwards as the margin of the true pelvis where the artery lics. On raising the peritoneum the spermatic vessels will be found adhering to it. The iliae artery itself is liable to be dis. placed by adhering to the serous membrane, when this is being detaehed from the inncr side of the psoas musele. The artery having been divested of its serons covering as far up as a point midway between the epigastrie and internal iliae branches, the ligature is to be passed around it in this place, where it will be safely removed from the sent of the disease. As the vein lies elose along the inner side of the artery, the point of the instrument shonld first be inserted between them, and passed from within ontwards, in order to avoid wounding the vein. If an aneurisin affect the upper end of the external iliae artery, it is proposed to tic the common iliac; but this is an operation of so serious a nature, that it ean in this resprect be execeded only by tying the aorta itself.

Fig. 1

3i * , Hanhar! !iul

THE SURGICAL DISSECTION OF THE POPLTEAL SPACE, THE LEG, PHE ANKLE, AND TIIE FOOT, DELIGAT1ON OF TUE POPLITEAL, POSTERIOR TIBIAL, PERONEAL, AND ANTERIOR TIHLAL ARTERIES MECHANISM OF THE FOOT. ITS DEFORMITIES. AMPUTATION.

In the lower extrenity, as in the upper one, we find, on dissection, an obvious conformity between the osseans and the arterial skeletons. The latter divides and subdivides into prineipal brunches exactly aceording to the multiplication of the segmental parts of the former. The femoral artery is a single trunk passing sidelong with the femur, just as the brachial artery is single with the bumerus; the femonal artery divides according to the boncs of the ligg just as the brachial artery divides aceording to the bones of the forcarm; and the erural arteries subdivide according to the number of toes, in the same manmer as the anteries of the forcarm subdivide aceording to the number of the fingers. This corlespondenee between the osseous and arterial skeletous in both the upper and the lower members anturally leads to a comparison of both, and the result is a reeog nition of parallelism seareely less marked than that which is self-ovident as cxisting between the opposite limbs. In drawing this comparison between the upper and lower limbs we record their respective designs. Just as far as we ean trace their similitude we may mark their dissimilitude to eommence; but we shall discover that the latter condition is solely the effect of a moditication of analogous elementary parts, and that upon the amount of that modifieation depends the eapahility of each to perform its particular motions and serve its special uses. And while in the comprison of both members as entireties we may thus appreciate the sum-total of their anatomical and finctional sameness and differenee, we may read it as plainly in the comparison of their smallest parts, which in the aggregate constitute the whole. Thus, if the likeness between a lumerus nad a femur, between the bones of the foream and those of the leg, between a carpus and a tarsus, betweeu a metaearpus and a inctatarsus, betwoen the fingers and the toes, at once strikes the attention of even the ensual obscrver, we as anatomists have but to pursue the comparison, and discover that the small pisiform bone of the enrpus is the analogue of the large os ealcis, and that simply whant the greater is to the lesser, the foot is to the hand-manely, a form of quantity, upon whose increase or degradation depends the functional differeuce which gives to the one the name of prehensile organ, and to the other that of an organ of progression. Premising these few remarks, we may pass to the examination of the anatomg of the lower extremity, expecting to find what we shall find-manely, i marked eorrespondence between it and the upper limh, not only in respeet to its raseular and osscous portions, hut for the most part also as to its muscles, wherenpon it will appear tbat the several operations required to be performed on the one member are to be conducted in mueli the same manaer, and on the same prineiple, on the ofler.

On comparing the bend of the knee witb the bend of the elbow, as evident a correspondence ean be disecmed hotween these two regions as exists hetween the groin aud the axilla.
In front of the knec appears, subcutaneonsly, the patello-it large sesamoid bone developed in the united tendons of the great extensor museles on the forepart of the thigh. Between the integument and the patella a hursa exists, evidently for the same purpose here as that of the one over its amaloguc-the oleeranon process of the ulna-for facilitating motion and obriating the effeets of pressure. The bursa is, however, from excessive and habitual pressurc, liable to beeone inflamed, and form a tumonr by the aecumulation of its secretion. By its posterior surface, which is artienlarly moveable on the intercondyloid anterios faee of the femur, the patella constitutes a part of the knee-joint. Its sides give attachment to the two vasti museles; its upper horder to the rectus femoris and erureus muscles, and from its anterior surface the tendinous filures of those muscles are eontinued under the nume ligamentum patella, to be inserted into the tuherele on the forepart of the upper end of the tibia. The use of the patella is to give effect to the action of the muscles in extending the leg, and to give protection to the joiut.
Bebind the kneejoint, the muscles which eomncet the keg with the thigh bound the spaee named popliteal. When the integuments and subcutaneons adipose substance are removed from this place, the dense
faseia lata may be seca binding these miseles so closcly together as to leave but a very narrow interval hetween them at the mesial line. On removing this fascin ard extending the joint, the museles part asunder, and the popliteal space as usually descriled is therehy formed. This region now presents of a lozenge-shaped furn, of which the widest diameter is opposite the knec.joint. The flexor museles,-viz, the bieeps, \mathbf{u}, externally, and the semimembranosus, c, and semitendinosis, B_{1} internally; in diverging from cach other as they jass down from the sides of the thigh to those of the upper part of the leg, form the npper angle of this space; and its lower angle is described by the two heads of the gastroenemius inuscle, 5 , arising inside the tlexors, from the eondyles of the fermur, and joining each other a little below the tlexure of the joint. While those museles bound the sprace laterally, the lower end and condyles of the femur and the upper end of the tilia, with the popliteus muscle and the posterior limaments of the joint, homnd it in front.
Like the extensor muscles, the flexors are very powerfnl, and necessarily so, for, licing inscrted into the bones of the leg elose below the kuee.joint, they aet at a disadyantageons levernge, giving unbrided motion to the limb at the expense of power. The biceps muscle externally, arising by two heads-one from the tuber ischii, and the other from the inferior third of the posterior surface of the femur, between the origins of the vastus externus and the adductors, -ends in a strong, short tendon, which, passing behind the outer condyle, is iuserted into the head of the filsula, and has connexions also with the faseia of the leg. Internally, on the haek of the thigh, appear the semitendinosus and semimemheranosus museles, the former of which, the more superficial of the two, arises in common with the long head of the hiceps from the tuber iseliii, and, deseending to a point threc or four inebes above the knee joint, ends in a ronnded tendou, whieb is inserted into the anterior surface of the tilia below the tubercle of that bone. The seminembrauosus, arising also from the tuber iselii hy a flattened tendon, and presenting thick and Heshy in tbe midulle and lower parts of the thigh, ends, a little ahove the inner condyle of the fcumer, in a strong tendon, whieh divides into three parts, one of which beeomes inserted into the posterior surface of the lead of the tibia, another heing directed upwards and outwards, strengthening the eapsular ligament, and another part turning downwards, and forming a fascia over the poplitens muscle. Covering the tendons of the two last-named muscles appear those of the gracilis and sartorius, inserted into the internal surfaee of the head of the tibia. In connexion with the teadons of insertion of those several muselos, harsw are to be met with, wbich not unfrequently become inflamed and distended, and sirmbate a popliteal aneurism as well by furm ns by having an inpulse communiented to it from the popliteal artery. Bursse are also situated between the condyles of the femur and the tendinous origins of the gastrocnemius. This muscle and the soleus may be regarded as onc, as well from the fact of their having but a single tendon of insertion as from their action on the heel being the same. The gastronemins :urising by two heads, each from orer the hack of the eorresponding condyle of the femm, and the flesly fibres of the two eonverging and miting a little helow the knee, and the solvus arising also by two heads, -one from the back of the upper third of the fibula, and the other from the middle of the tihin helow the insertion of the popliteus inusele,-we find the two (gastroencmius and solwus) united by a common tendon (tendo Achillis), which is inserted into the back of the os calcis, having, hetween it and that home, a hursa to obviate friction. The plautaris musele arising form the external condyle of the femur, under the exterual head of the gastrocnemius, ends, where it erosses the popliteal ressels, in a tendon which descends over thur soleus to gain the inner side of the tendo Achillis, mul, with this, is inserted into the os ealeis. The poplitens muscle arising from the onter surface of the external condyle of the femur cooses, obliquely inwarls and dowawards, the back of the joint, for which it serves as an active ligament, having connexion with the enpule, and is inserted into the

Fiomer 1,-A, Tendon of gracilis muscle- - B, Tendon of scraitendininosus niugde- O, Seminembranosus muede, -D, Popliteal aitery; d, postarior tibiul artery.- H , Biceps

 tibialis posticne musela-Q, Temlon of peronms brovis oliuscle,- R , Teudon of peromens

Figere 2.-Ail p rauscle- -L , Upper part of tho fibila - S , Astragalua
posterior surfuce of the upper part of the tibia. The popliteal sprace is filled with adipose substanee, in which are embedded several lymphatie bodies, and through which pass the prineipal vessels and nerves to the leg.
In the dissection of the popliteal space, the more important parts first met with are the bramebes of the great sciatie nerve, In the upper augle of this spuce, this nerve, immedintely bencath the fascin and between the lateral muscles, will be found dividing into the peroneal, G , and posterior tibial branches, F. The peroneal nerve deseends close to the inner margin of the tendon of the bieeps musele; and, having reached the outer side of the knee, Fig. 2, below the insertion of the tendon of that musele into the head of the fibula, x, winds round the neck of this bone under eover of the peroneus lougus musele, f , to come into connexion with the anterior tibial artery. The posterior tibial nerve, F, lig. 1, descends the popliteal space midway to the cleft between the heads of the gnstronemius; and, after passing beneatb this nusele, to gain the inner side of the popliteal artery, D, Fig. 2, it then passes beneath the solens muscle also, and aecompanies the posterior tibial artery. On the same plame with and close to the posterior tibinl nerve in the popliteal space, will be seen the terminal branch of the lesser sciatic nerve, together with a swall artery and vein destined for distribution to the skin and of her smpericial parts on the back of the knee. Opposite the heads of the gastrocneurius, the peroncal and posterior tibial nerves, separated from each other, give off each a branch, both of which descend along the mesial line of the ealf, and joining near the ipper end of the tendo Achillis, the single nerve here, Fig. 1, becomes superficial to the fascin, and thence descends bebind the outer ankle to main the external border of the foot, where it divides into cutaneous branches and others to be distributed to the tbree or four outer toes. In company with this norve will be seen the posterior saphena vein, s , which, commencing at tbe outer border of the foot, passes behind tbe onter ankle, and asecuds the mesial line of the calf to join the popliteal wein, in the eluft letureen the heads of the gastroeuemius.
On removing next the adipose substanee and lymphatic glands from the popliteal space, we expose the popliteal vein, E, and artery, D, Fig. 1. The relative position of these vessels and the posterior tibial nerve may now be seen. Between the heads of the gastrocnemius the nerve, $\mathrm{F}_{\text {, giving off large brameles to this muscle, lies close upon the }}$ popliteal vein, where this ressel, becoming more superficial by the projection of the back of the knee.joint, is joined by the posterior saphena vein. Beneath and to the inner side of the veins tbe popliteal artery, D , appears. On tracing the ressels and aerve from this point apwards througb the popliteal space, we find tbe nerve occupying a comparatively superficial position at the suesial line, while the vessels are directed upwards, forwards, and inwards, passing deeply, as they become covered by the inuer flexor muscles, C в, to the inner side of the lower thiwd of the femur, where they perforate the tendon of the adductor magnus muscle.

The popliteal artery, D, Fig. 2, being the continuation of the femoral, extends from the opening in the great adductor tendon at the junction of the middle and lower third of the thigh, to the point where it divides, in the upper and baek part of the log, at the lower horder of the popliteus musele, k , into the anterior and posterior tibial branches. In order to expose the vessel tbrough this extent, we have to divile and reflect the heads of the gastroenemius muscle, $\mathrm{J} J$, and to retract the inner flesors. The pepliteal artery will then be seen passing olliquely down the niddle of the back of the joint. It is deeply placed in its whole course. Its upper and lower thirds are covered by large muscles; whilst the faseia and \mathfrak{a} quantity of adipose tissue overlies its middle. The upper purt of the artery rests upon the femur, its middle part upon the posterior ligament of the jgint, and its lower part upon the popliteus muscle. The popliteal vein, r, Fig. 1, adheres to the artery in its whole course, being situated on its outer side above, and posterior to it helow. The vein is not unfrequently found to be double; one vein lying to cither side of the artery; and both laving hranches of communication with each other, which cross behind the artery. In some instanees the posterior sapheua vein, instead of joiuing the popliteal vein, ascends superficially to terminate in some of the large veins of the thigh. Niuncrous lymphatic vessels accompany the superficina and deep veins into the popliteal space, where they join the lymphatic bodies, which here lie in the eonrse of the artery,

The branches derived from the popliteal artery are the miscular and the artienlar. The fomer sping from the vessel opposite tbose parts of the several muscles which lie in eoutaet with it ; the latter are generally five in number-two supcrior, two inferior, and one median. The two superior artieular branches arise from cither side of the artery, and
puss aromnd the lower end of the feume, the oue beneath the onter, the other beneath the inner flexors, aloove the knee-joint; and the two inferior pass off from it, the one internally, around the inner side of the head of the tibia, the other externally, under the external lateral ligament, hotb being beneath the heads of the gastroenemius below the joint; while the midule articular enters the joint through the posterior bgament, to supply the adipose substmee and the synovial membranc. The two superior and inferior artienlar branches anastomose freely around the knee behind, interally, and in fiont, where they are joined by the terminal bunches of the anastomotie, from the femoral, and by those of the reenrent, from the anterior tibial. The anastomotie braneh is also articular: it arises from the femoral where this pierees the tendon of the adductor magnus muscle, and, passing down in front of that tendon, ramifies over the forepart of the knee benenth the vastus internus muscle which it supplies, and inosculates freely with the other articnlar
brouclies. The main vessel, haviug arrived at the lower borden of the boplitens muse man ere it is ang arived at the lower border of the poplitens misele, where it is about to pass beneath the soleus, divides
into two branches, of which one passes tbrough the iuterossen thent to beome the anterior tibinses through the interosseous ligameut to beeome the anterior tibial; while the other, after descending a short way belind the flexor communis, between the bones of the leg,
separates into the per separates into the peroneal and posterior tibial arteries. In some rare instances the popliteal artery is fonnd to divide above the popliteus uusele into the anterior, or the posterior tibinl, or the peroneal. The popliteal artery, unlike the vein, is never double.
The two large muscles (gastrocnemius and soleus), forming the calf of the leg, have to be removed, together with the deep faseia, in order to expose the posterior tibial, and peronaal vessels and nerves. Bencath those muscles the fascia forms a sheath for the vessels, and binds them close to the deep layer of muscles in their whole comse down the back of the leg. The point at which the main artery, D, Fig. 2, gives off the anterior tibial, is generally at the lower border of the popliteus muscle, on a level with the neck of the fibma; that at which the artery again subdivides into the peronaal, E , and posterior thial branches, D , is in the mesial line of the leg, and generally on a level with the junction of its upper and middle thirds. From this place the two arteries diverge in their descent, the peromeal being directed along the inner border of the fibula towards the back of the outer ankle; while the posterior tibial, approaching the inner side of the tibia, and having the flexor commmis digitorum hetween it and the bone, courses towards the haek of the inner ankle. The gastrocnemius and soleus muscles overlie hoth arteries in their upper two thirds; hut as these muscles taper towards the mesinl line where they end in the tendo Achillis, J^{*}, Fig. 1, they lenve the posterior tihial artery, \mathbf{D}, with its aceompanying nerve, \mathbf{P}, and vein, E , uncovered in the lower part of the leg, except by the skin and the superficial and deep layers of the fascire, the latter of which is of considerable density. The peroneal artery is deeply situated in its whole conrse. Soon after its origin it passes under cover of the flexor longus pollicis, 0 , a muscle of large size arising from the lower three-fourths of the fibula, and will be found overlapped by this musele on the outer border of the tendo Achillis, as low down as the outer ankle. The two arteries are accompanied by venx comites, which, with the sbort saphema vein, form the popliteal vein. The posterior tibial artery is closely followed by the posterior tibial nerve, F^{*}, Fig. 2. In the popliteal space this nerve crosses to the inner side of the popiteal artery, where both are abont to pass under the gastrocnemius muscle, to which they give large brauehes. Near the middle of the leg the nerve crosses to the onter side of the posterior tibial artery, and in this relative position both deseend straight to a point about midway between the inner ankle and calcaneum, wbere they appear having the tendons of the tibialis posticus and flexor longus digitorum to their inner side, and the tendon of the flexor longus pollicis on their outer side. The order of those purts, counting them from the inner ankle backwards and outwards to the calenneum, is this: the tibialis posticus, flexor communis digitorum, nerve, artery, and venz comites, and the flexor pollicis longus. Numerous small branches are given off from the nerve and artery to the neighbouring parts in their course.
The principal varicties of the posterior crural arteries are these-the tibial vessel, in some instances, is larger than usual, while the peroncal is small, or absent; and, in others, the peronsal supplies the place of the posterior tibial, when the latter is diminished in sizc. The peronzel has been known to take the position of the posterior tibial in the lower part of the leg, and to supply the plantar arteries, or, passing through the interosseous space above the outer aukle, to take the position and form of distribution of the dorsal artery of the foot when the anterior tibial was small, and expended by ramifieation in the upper part of the leg. In whatever condition the two vessels may be found, there will
电

always be seen ramifying around the ankle-joint articular $_{1}$ hranelies ${ }_{1}$ which anastomose freely with each other and with those of the anterior tilial.
The popliteal artery is unfavourably circhmstaneed for the applieation of a ligature. It is very deeply situated ${ }_{1}$ and the vein adheres elosely to its posterior surface. Numerous hrinueles (artieular and museular) arise from it at short intervals; and these, besides being (as some oljeet) a souree of disturhance to a ligature, are halle to he injured in the operation ${ }_{3}$ in which case the collateral eirculation can be but very sparingly maintained after the main vessel is tied. There is a dunger, too, of injuring the middle hranch of the seiatie nerve ${ }_{2}$ in the incisions required to reaeh the artery; and lastly, there is a possibility of this vessel dividing higher up than usual. Considering these fuets in reference to those eases in which it might be supposed neeessary to tie the popliteal artery-sueh eases, for example, as ancurism of either of the erural arteries or secondary hrmorrhages occurring after amputations of the leg at a time when the healing process was fir advaneed and the hleeding vessels inaecessible, -it hecomes a question whether it would not be preferable to tie the femoral artery rather than the popliteal. But when the popliteal artery itself heeomes affected with ancurism, and when, in additiou to the anatomical eireumstances which forbid the application of a ligature to this vessel ${ }_{1}$ we consider those which ure pathological 1_{1} - such as the eoats of the artery being bere diseased, the relative position of the neighbouring parts being disturbed hy the tumour, the articular branches themselves heing involved, and the large irregular wound which would he required to isolate the disease, at the risk of danger to the henlth from profuse suppuration to the limh from destruction of the collateral hranehes, or to the joint from eientrization, rendering it permanently bent, -we must aeknowledge at once the neeessity for tying the femoral part of the main vessel.

When the popliteal artery happens to be divided in a wound, it will he required to expose its bleeding orifices, and tie hoth these in the wound. For this purpose the following operation, usually recommended for reaching the vessel, may he necessary. The skin and fascia lata are to he incised in a direction corresponding to that of the vessel. The extent of the incision must he considerable (ahout three inches), so as the more eouveniently to expose the artery in its deep situation. On laying bare the outer margin of the seumemhranosus muscle, while the knee is straight it now becomes necessary to Hex the joint partially, in order that this musele may admit of being pressed inwards from over the vessel. The external margin of the wound ${ }_{1}$ ineluding the middle braneh of the seiatie nerve ${ }_{1}$ should he retracted ontwards, so as to ensure the safcty of that nerve, while room is gained for making the deeper ineisions. The adinose substance, which is here generally ahundant,$_{1}$ should now he divided, between the mesial line and the semimemhranosus, till the sheath of the vessels be exposed. The sheath, which is hut a mere cellular envelope, shouk be ineised at its inner side, to a void wounding the popliteal vein. The pulsation of the artery will now indicate its exact position. As the vein adheres rather firmly to the coats of the artery, some eare is required to separate the two vessels, so as to pass the ligature around each end of the artery from without inwards, in order thus to exclude the vein. While this operation is heing performed in a case of wound of the popliteal artery, the hemorrhage may be arrested by compressing the femoral vessel, cither agaiust the femur or the os pubis.

In the operation for tying the posterior tihial artery uear its midale, an incision of three or four ineles in extent is to he made through the skiu and fascin, in a liue eorresponding with the inmer posterior margin of the tibia and the great muscles of the ealf. The long saphena vein should be here avoided. The mass of the gastroenemius and soleus muscles requires to he detached from the tihia, and then the krice is to he flexed and the foot extended, so as to relax these museles, and allow them to be retracted from the planc of the vessels. This heing done, the deep fuscia which covers the artery and its aceompanying nerve is next to he sought for and divided. The artery will now appear pulsatuig on the flexor eommunis at a situation an inch from the inner edge of the tibia. In seareling for the artery, a mistake as to its situation here is liable to occur in consequence of the operator making his incision between the flexor comuunis and the tibia, and raising that musele with the
artery and nerve upon it. While the ligature is heing pinssed around the artery, due eare should be taken to exclule the rena comites and the nerve. This is an operation hawever, hut seldom required. If cither of the posterior erural arteries happen to he wounded the readiest mode of reaching it is in the soound, which trould perhaps require to be enlarged, and both ends of the vessel lre then to he tied. Aneurism of either of those vessels or of their continuations in the foot seldom, if ever happens; and when the plantar arteries are wounded, and canmot be reached in the wound, then the posterion tibial should be tied at the situation where it is more readily aceessible than under the tbiek mass of museles forming the ealf, and that situation is behind the lower end of the tibia, hetween the inser ankle aud the os calcis,
Beneath the integuments aud suhcutanecus:adipose tissue on the forepart of the leg and foot, the fuseia I_{1} Fig. 2 , is to he seen stretched over the museles and sendiug processes hetween thern, thus eneasing each of these in a special sheath. The fascia is bere of considerable density: It is attached on the inner side of the leg to the spine of the tibia, D , and] on the outer side it is eomected to the auterior margin of the fibula, and is extended theuce over the peroneal houseles to those forming the calf. Between the extensor communis digitorum, $\mathrm{B} h$, and the peroneus longhas, F_{1} the strong process of fascia which is attached to the fihula. \mathbf{L}_{1} and that whieh joins the spine of the tihiu separate the muscles of the anterior part of the leg from those of the posterius purt. Behind botb bunes of the leg the fiscia divides into two layers, which enclose the great muscles of the calf-the superficial layer heing thin aud transparent, while the deep layer is of eonsiderale density, and hinds the deep museles to the hones and the vessels and nerves to the muscles. In trout of the aukle joint, the fascia adhering to hoth malleoli is increased in deusity, constitutiag a band (anterior amular liganent) which extends between the malleoli, forms sheaths for the several extensur tendons, and binds these down in lront ol' the joint. From the lower border of the annular ligament, the faseia is continued over the dorsum of the foot, forming sheaths for the tendons and muscles of this part. Behind the inner malleolus, c_{1} Fig. 1_{1} the fascia, π, attached to this process and to the inner side of the os ealeis appears as the iuternal annnlar ligament, which heing broad and strong, forms a kind of arch ${ }_{1}$ henently which in special sheaths the flexor tendons, and the posterior tihial yessel and nerve, pass to the sole of the foot. On traeing the faseia between the ankles, posteriorly; it will also he seen to divide into two layers-superficial and deep ${ }_{\mathrm{i}}$ the former of whicb adheres to the borders of the tendo Achillis, while the latter passes between this tendon and the deep flesors. Between hoth these parts of the fascia, a vein may he found to pass up from the inner border of the foot; and it may he that this vessel would, when the artery was being tied ${ }_{1}$ give the false iwpression that the situation of the artery was already reached if it were not remembered that in order to expose the latter, the deep layer of fascia bas also to he divided. While exposing the fascia on the forepart of the leg and dorsim of the foot, we mieet with the musculo-cutaneons hranch of the peroneal nerve, which pierees the faseiu at about the middle of the linb, hetween the peronzal and extensor communis museles, deseends superficially in frout of the outer ankle and annular ligament, and dividing into branches soun after it appenrs on the fascia, these traverse in two groups the dorsum of the foot t_{1} to he distributed to the integuments of the tive toes. On the inner side of the tibia C_{1} Fig. l_{1} will he scen the internal or long saphena veim ${ }_{1} B_{B_{1}}$ which, commenciug by numerous hranches on the dorsal surfaee of the foot ascends in front of the immer aukle, to gain the inner side of the leg, ater whicb it asceads behind the inger side of the knee and thigh, till it terminates at tbe sapheuons opeuing, where it joins the femoral vein. In its course along the lower part of the thigh, the leg and the foot this vein is closely alecoupanied hy the long saphenous uerve, derived from the anterior crural, und hy a group of lymphatics. It is this vessel, and also the sbort sipheea veiu, which so commonly appear in a varicose state caused hy some mechurical impediment to the appear in a varicose state caused hy some circulation in the body, such as anlarged liver compressing the vena eava, a pregnant uterus bearing agaiust the iline veins, a erural hernia, or an anenrism, or enlarged lyupbatic hodies obstructing the emoral vein. Tinder either of those circurustances the hlood obstrueted in its return to the heart, distends the coats of the reins, thereby renlering their valves useless, hy separating them from each other. Con-

Figures or plate l.
Frounar 2.-A, Tibialia anticas unsele ; on its leadon-D, Esterseor conmmanis digi-

 D, The tibin-E c, $-\mathbf{K ~ K ~ K}$, Auterior tibinl atery and merre-L L L L, Extussor brevis digitorum.

 and tendo Achillisi-G, soleus matece-and morves-L, Posterior titinal nerve.
sidering the oprention of tying those veins (while in that state, and asing to that eause) for the cure of varicose ulcers, and considering, moreover, that all the deeper veins must be in the like state from the Aane cause, 1 am at a loss to know the rationale of such treatment. If there be auy attending sueh operation, it must he evident that, in order to yive it effect (as the source of the venous current is at the capillarics and as the pressure of the venons hlood is from above) the ligature shon placed on the vessel as well elosc above as betore the ulecrated pare
By removing the fascia from the front of the leg and foot, we expose the several museles and tendens which are bere situated. As all the museles which have their origins from the thigh-hone have their inser. tions into the bones of the leg, and thus cffeet the motions of the latter through the medium of the knec-joint, so we find all those muscles whiel arise from the bones of the leg, back and front, are inserted into some part of the foot, and act upon this by means of the ankle-joint, at the same time that some of them operate additionally upon the toes, through the intervention of the phalangeal jousts. In the upper part of the leg the tibialis anticns, A , Fig. 2, and extensor communis muscle, B , have each an origin from the fascia which covers them, and from the intermuscular septum which divides them. In the lower part of the leg where these muscles nud the extensor pollicis, c , terminate in tendons, they are readily sepamble from one another. The tibialis anticus lics along the onter side of the tibia, from the upper tiro-thirds of which, and from the heal of the fibula, the fascis, and interosseous ligament, it arises tendinous and fleshy. This musele is superficial in its whole leugth; its tendon eommeneing abont the middle of the leg, passes in a separate loose slieatho of the anminar ligament in front of the inner ankle, to be inserted into the inner side of the intermal cunciform bone and base of the motatnrsal bone of the great toe. The extensor communis digitorum lies close to the outer side of the materior tibial muscle, and arises from the upper three-fourths of the fibula, from the interosseous ligament and intermuscular septum. At the lower part of the leg, this muscle ends in three or four flat tendons, which pass together through a ring of the annular ligament, and extending forwards, $b \& b b$, over the dorsum of the fiot, where they part from each other, hecome inserted into the four onter toes. The peroneus tertius or anterior, is that portion of the eommon extensor muscle whieh is inserted into the base of the fifth metatarsul bonc. On separating the anterior tibial, and common extensor museles, we find the extensor longus pollicis, $c c$, which, eoncealed hetween the two, arises from the middle of the fibula, and the interosseous ligament; its tendon passes beneath the annular ligament in front of the aukle-joint, and after traversing the inner part of the dorsum of the foot, beeomes inserted into the two phalanges of the great toe. Beneath the tendons of the estensor communis on the instep will be seen the extensor digitorum brevis, I L , lying in an oblique direction, hetween the upper and outer part of the os calcis, from which, and from the contiguons bones and amular ligament, it arises, and the four inner toes into each of whieh it is inserted by a small flat tendon which joins the eorrenponding tendon of the long common extensor. That part of the extensor hrevis, whiel is connected with the great toe, appears as a separate little muscle.

The unterior tibial artery, k, Fig. 2, extends from the upper part of the interosscous ligannent which it perforates, to the hend of the ankle-joint, whence it is continued over the dorsum of the foot. In the upper third of the leg, the anterior tikial artery is deeply situated between the tibialis anticus, and flexor communis muscles. Here it will be found, close in front of the interosseous ligament, at about an inch and-e-half in depth from the anterior surface, and removed from the spine of the tibia at an interval equal to the width of the tibialis anticus muscle. In its eonrse down the leg, the vessel passes obliquely from a point close to the inner side of the neck of the fibula, to midway hetween the ankles. In its descent, it becomes gradually more superficial. In the middle of the leg, the vessel passes between the extensor longus pollicis, and the tibialis auticus muscles. Abose, henentl, and below the anmurar ligament, this artery will be found to pass midway between the extensor pollicis tendon, and those of the extensor communis, and to hold the same redation to these parts in traversing the dorsum of the foot, till it gains the interval between the two inner metatarsal hones, where it divides iuto two lunalles, one of which passes forwards in the first interdigital space, while the other sinks between the first and second netatarsal bones, to inoseulate with the plantar arteries. The innermost tendon ol the short common extensor generally crosses in front of the dorsal artery of the fout neur its termination. Between the ankle and the first interosseons space the artery lies comparatively supurficial, being lere covered only by the skin, faseia, and cellulur membrane. Two veins accompany the anterior tibial artery, and its continuation on
the dorsum of the foot. The antcrior tibial nerve, a branch of the peronral, joins the outer side of the artery, nbout the middle of the leg, and accompanics it closely in this position, till both have passed beneath the annular ligament. Both send branches to the several muscles in connexion with them. On the dorsum of the foot the nerve will be found on the inucr side of the artery, and in passing to the first interosseous space it gives branches to the extensor digitorum brevis, to the skin of the dorsum of the foot, and ends supplying the integumcuts of the first and second tocs.
The branches of the anterior tibial artery are articular and museular. From its upper end, which appears perforating the interosseous lignment, ariscs the reeurrent hranch whieh anastomoses in front of the knee with the articular branches of the popliteal artery. Near the ankle, arise on either side of the vessel two malleolar branches, internal and external,
the former the former communieating with branches of the posterior tihial, the latter with those of the peroneal. Numerous small musculne hranches adac, at short intervals, from the vessel in its passage down the leg.
Tarsal, metatarsal, and Tarsal, metatarsal, and small digital branches spring from the dorsal from its usual course; in some cases it artery is rarely found to devinte than usual. When this ressel appears defieient its pare grenter size plicd by some branch of the peroneal or posterior tihial, which pierces the interosscous ligament from behind.

The anterior tibial artcry, when requiring a ligature to he applied to it in any part of its course, may be exposed by an incision, extending for three or four inches (more or less, aceording to the depth of the vessel), along the outer border of the tibialis anticus muscle. The fibrous septum between this muscle aud the extensor communis, will serve as a guide to the vessel in the upper third of the leg, where it lies deeply on the interosseous ligameut. In the middle of the leg, the vessel is to be sought for between the anterior tihial and extensor longus pollicis muscles. In the lower part of the leg, and on the dorsum of the foot, it will be found between the extensor longus pollicis, and extensor communis tendons, the former heing taken as a guide for the incision. In passing the ligature around this vessel at either of these situations, care is required to avoid including the vente comites and the accompanying nerve.
The muscles which form the deep layer at the back of the leg, and whose origin there and insertion into the plantar aspect of the bones of the foot render them the flexors of this organ, cannot be seen in their entireties until the muscles proper to the sole of the foot are dissected and removed. Previously to doing so it may not be amiss to make a few observations on the form of the foot as contrasted with that of the band. Regarding the form of the foot, in this point of view, it is not the ohject liere to prove its adaptation to the erect posture of man, for that needs uo proof, while it is so self-cvident. But, if hy the faets which so clearly illustrate that question, the attention may be turned to cultirate the principle of conservative surgery, a mention of them here will not he out of place.

The foot, in respect to its osseous parts, presents that arrangement of them which declares not only its own particular function, hut that configuration of the bones of the lower limb, taken as a whole, which is necessary for the due performance of that function. The foot is adapted to plantigrade motion. In its unconstrained position it forms a right angle with the bones of the leg; and the strongest effort of the muscles which move it ean only alter that angle to one a little more obtuse in flexion, or acute in cxtension. Articulating hy one of its tarsal bones (the astragalus) with the lower ends of the tibia and fibula, the malleolar processes of these so lock it in as to allow hut a very limited degree of lateral motion or rotation; and while dirccting it to the prone position entirely prevent it assuming the supiue. The latter motion cannot be performed by the foot in consequence also of the immobility of the bones of the leg in respeet to each other. The tibia (which is the maloguc of the radius in all respects beside that of being chiefly articulated with the tarsus as the radius is with the carpus) is developed for the prone position of the foot; is set in that position by its form; is fixed permanently in it by its ligaments, and there exist uo muscles in the leg which correspond in function with those which are the supinators of the forearm. With the bones of the leg, that of the thigh conforms; with this the pelvis and spinal column; and with these the head; all segments of the human form, showing separately what all together show with the force of combinate associative evidences, that the form of man, like that of each of the lower animals, is the substantive type of his senses and dominant instincts.

The osseons basis of the foot, like that of the hand, is described as divisible into three sets of parts, viz., the tarsus, the metatarsus, and the

phalanges. The latter are subdivided into three sets also-a first, a second, and a third. In this will be notieed the transverse divisioning of the foot, but this is artificial, for, naturally, those divisions are conneeted end to end by ligaments whieb, while admitting of motion, bind the bones togetber in serial rank. Naturally, the foot, like the band, is formed on the prineiple of radiation, into five individual members-erel of which consisting of jointed parts--the lust, the second, and the first phalanx, the metatarsal bone and one of the tarsal, represents a form perse, and only associated with the fonr others for united motion. While the elemental parts of the foot are represented iu the hand, and yet both members present respectively sueh preubarities ol form as exist, it is only by a comparison of the two that we mily fully recognise those differenees, and know on what mode of develoment they depend. The great size of the tarsal bones, and espeeially of the astragalus and os enleis, eorapared to the carpal bones, eonstitutes a chief difference between the forms of the foot and hand. The astragalus is so large that it equals by its artieular upper facet the artienlar surface of the tibia, and exeludes the other tarsal bones from the tibio-tarsal joint, whereas the first row of the carpal bones nere so small that together they enter into the formation of the radio-earpal joint. The os ealcis reeciving on its upper anterior faee the lower articular surface of the astragalus, projects like a spur horizontally behind the bones of the leg, and forms the heel, of which in the band we find only a rudimentary analoguc, viz., the pisiform bone; but in the lower animals (Solipeds and Ruminants) the pisiform bone projects behind the earpus like their os eales, and is not much smaller in size than this; and thus it rpperers that, as by a quantitive equalization of both those bones, the fore and linder limbs of those animals are rendered more similar, so in the human hand and foot, on the quantitive difference botwcen those bones depends very much the special differential claracters of those members. In not a less degree than by the features just mentioned, is the foot rendered different from the hand by the form, position, and use of the bones of the great toe contrasted with those of the thumb. The metatarsal boncs are very similar to the metaearpal in form, and are of the sance number; but while the meta. tarsal bone of the great toe stands fixedly sidelong with the four olleres, the metacnrpal bone of the thumb is depressed towards the palm ol' the band, projeets apart from the four others, and, having an indejendent motion by means of a speeial museular apparatus, is capable of opposing its phalangeal appendage to those of the ouher digits, thus constituting the hand a prehensile organ, while the want of that special modification of the metatarso. phalangeal scrics of bones answers for the fituess of the form of the foot as a basis of support and an organ of progression. To these functional peculiarities of both organs, respectively, the length and pliability of the fingers, and the shortness and comparatively restrained motion of the toes, greatly eontribute; for while the thumb and any one finger (the band being deprived of all the other fingers) may still exert prehensile action, the great toe, incapable of oppnsing its fellows, requires not such a length of tbem as to equal that of the fingers, and henee we find them, from within outrards, decreasing in size, exactly in accordance with their lessening functional value-a fact, which in itself renders the foot more suited to progressive motion,

The foot, by this peculiar coaptation of its osscous parts, and hy their relative proportions and differenees as to size eompared witls those of the band, presents itself of an arched form, convex at the dorsal aspect, and eoncave at the plantar. Tbis arched shape is chiefly due to the large size and projecting position of the os calcis, which, by lilting the metatarsal bones bebind, receives, itsell, the weight of the boly, and throws it forwards on their phalangeal ends. By that artieular union of several bones which gives this arehed form to the foot, three principal uses among others of lesser note are served, viz., elasticity of support to the superinenmbent weigbt, a favonrable condition for leverage and forward motion, and a reeess for locating the plantar muscles, vessels, and nerves, where pressure cannot injure then or hinder their functions.
The sole of the foot, Plate LI., Figs. 2, 3, is covered by a hard and thick integument, bencath which will be seen a large quantity of granu-
lated adipose tissue so iutersected by bands of fibrous structure as to form a firm, bit elastie cushion, in the sitnations particularly of the heed and metatarso-phalangeal joints on which the weight of the body presses. On removing thiis structure, we expose the plantar fascia, B, Fig. 2, extending from the os ealeis, A, to the toes. This filscia, consisting of transverse and longitudinal fibres, is remarkably strong, especinlly its midde and onter parts, which, like ligaments, serve to retain the arelied form of the foot, and thereley to protect the phantar structures from superineumbent pressure during the erect posture. The superficial plantar muscles become exposed on removing the plantar fascia, to which they adhere. Tbey furm three fleshy m.sses-an onter, un inner, and a middle one, separated from each other by septa firmod of the plantar fascin. In the eentre will be seen the thick fle lly flewor digitorum brevis muscle, arising from the ivferior auterior part of the os ealcis, and passing formards to divide iuto finm small tendoas, $d d d d$, which are inserted into the second phalanges of the fuur outer toes. On the inner side of the foot appears the abductor pollieis, D, arising from the inner side of the os ealcis and intermal aunular lignment, and passing to be inserted with the flexor pallieis brevis, \mathbf{n}, into the st-simoid bones and base of the first plalanx of the great toee Un the external border of the foot is situated the abductar mimimi digiti, c, arising from the onter side of the os calcis, and passing to be inserted with the flexor brevis minimi digiti, , into the base of the tirst. phalan. of the litrle toe. When the flexor brevis digitorum muselo is removed, the phatar arteries, L, M, and nerves, are brought partially into view; and by separating the abductor pollicis, n, from its urigin, their contimity with the posterior tilinal artery and nerves, behind the inner ankle, will be observed. The long flexors with which the vessels and nerves are in conmexion should now be examined.
The flexor digitorum longus, situated belind the tibin, arises from the surface of that bone below the insertion of the poplitens, mul as far down as a point a few iaches above the inuer malleolus, where its fibres: cud in a tendorn which passes behind the malleolus internal to the vessels and nerves, and thence turning forwards and outwards in the sole of the foot expands here, and divides into four tendous whieh pass formards to be inserted into the list phalanges of the four outer tocs. Inder the articulations of the first and second phalanges, where the tendons are each bound by a strong fibrous sheath, they pass throngh the slit tendons of the flexor digitorum brevis. In the sole of the foot appears a remakkable flesly mass of muscle, which, arising from the lower anterion part of the os caleis, above the origis of the dexor digitormu brevis, is inserted into the contiguous margin of the tendon of the flexor digitormun longus, and evideutly for the purpose of rectifying tbe oblique action uf the latter muscle appronching the toes from the inner ankle. The flexor pollicis longus, a muscle of large size and streugth, arises from the lower three-fonths of the fibula, and forms its tendon opposite the tibiotarsal joint, behind which it passes external to the ressels, and enters the sole of the foot above the tendon of the long common flexor; and, passing close to the inferior surfaces of the first metatarsal bune und its phalanges, to which it is bound by a fibrons sheath, is inserted into the list phalanx of the great toe. The tibialis posticns, sitmated between the bones of the leg and the two last described museles, arises from both those bones and from the whole surface of the interosscons ligament; forms its tendon behind the iuner ankle, and passes its own tendum between tlat of the flexor digitormm longus and the tibia to become the imermost of the parts bebind the internal malleolns, and proceeds thence to its insertion into the plantar border of the scaplioid and contignous bones of the tarsus. The tendons of all these long flexors play in lurse, where they pass behind the tibio-tarsal articulation. On the ourer side of the log appear the peronai muscles which, like the long flexors, act upon the foot through the inedium of the :ukle.joint. The peromaus longus arises subeutanconsly by fleshy' fibres around the bead of the fibula, and from the upper half of the extermal side of that bone, from the fascia which invests it aud from the intermusculur septa which separate it in frout from the exteusor communis, and behind from the

Figures or plate li.

Figure 1.-A a, The tibis and internal malleolus.- B L, Teulan of the tibialis antienss -C c. Tendon of the exteusor commumis digitormm.-D d, Tendon of tho usteuber pol-Lieis,-EE, External malleolins-F, Awbular liganceat crossed yy of the musculo-cutancous narve. - $(t$, Origin of short saplemin win. - 1 II,
vein.-I, Dorsalis pedis artery and nerve.- J, Metatarsal bone of gruat to. Abluctor minimi
 digiti-D, Alduotor pollioi,-E, Flesor necessorius musole--

II, Ficxor brevis pollicis muscla- 1 I I , Lumbricalis nuseles- - , Flexor Lrevis winimi
 nerves.
Figuse 3.-Other parts lithered as iu f.3. 5.-11. Metararsal bone of great toul-

 N, Teadon of peranacus lomgun anuscle.

COMAENTARY ON PlATES XLLX. L. \& LI.

muscles of the calf of the leg. Abour the middle of the leg this misele forns its tendon, which, passing straight down behind the outer malleolus to which it is bound by a proeess of the amular bgament, adrances thence forwards and inwards between the plantar maseles and the tarsal bones, and is inserted into the base of the metatarsal bone of the great roc, where it forms a sesamoid bone and radiates to other connexions. The peronaus brevis, benenth the former muscle, and more flesby thon it, arises from the postcrior surfaee of the lower half of the fibula; forms its tendon behind the outer malleolus, to whieb it is bound in the same groove with the peromens longus, and thence passes to be inserted into the base of the external metatarsal bonc and the cuboid. Of the other muscles situated in the sole of the foot, few or no remarks of surgical interest can be madc. Their names of flexors, abductors, and alduetors, are not so replicable to them ns to their counterparts attached to the freely moveable bones of the hand. The actions of the plantar muscles ure united for guthering and sustrining the osseous elements of the foot in the standing postme, and during progression; as to distinct actions, they have none; and of this, the existence of the transversalis pedis muscle and ligument binding the leads of the metatarsal bones togetber, is a prowf, while the relative positions and the otber ligaucentous eonnexions of the bones are of themsclyes suffieint evidence of the fact, and characterising the foot as a motionary pedestal,
The plantar liranches of the posterior tibiul artery are the intermal and external, beth of which are deeply placed between the superficial and decp, plantar muselos. The internal plantar artery, K, Fig. 2, is muel the swaller of the two, and expends itself on the muscles and integruments of the great tow. The external plantar artery, $\mathrm{K}_{\text {, }}$ is large, and scems to be the proper continuation of the posterior tibial. It corresponds, in the foot, to the deep palmar strch in the hand. Placed at. lirst between the origin of the abductor pollicis and the calcaneum, the extermal plantir artery passes outwards hetween the sbort common flexor, und the dexor accessorius, \mathbf{E}, to gain the inner horders of the muscles of the little toe; from this place it curves deeply inwards between the tendons of the long common flexor of the toes, $\mathrm{F} f f$, and the tarso-metatarsal joints, to gain the outer side of the first metatarsal bonc, where it anastomoses witb the dorsal artery of the foot, i, Fig. 3. In this conse it is covered in its posterior half by the flexor hrevis digitorum, and in its anterior lalf by this muscle, togetber with the tendons of the long common flexor, F, Fig. 2, of the tocs and the lumbricales muscles, 111 I. From the external plantar artery are derived the principal branehes for supplying the toes and the structures in the sole of the foot. The posterior tibial nerve, after passing behind the inner ankle with the artery to enter the sole of the foot, divides iuto two brunches-the internal and extermal plantar. The internal plantar neive, 1 , divides into four branches, for distribution to the four inner toos, to which they pass between the superficial and deep flexors. The external plantar nerve, passing along the inner side of the corresponding artery, sends branches to supply the outer toc and adjucent side of the next, and then passes, with the artery, hetween the deep common flexor tendon and the metatarsus, to be distributed to the deep plantar muscles. This arrangement of the plantar vessels and nerves corresponds very exactly with tluat of the like parts in the palm of the hand:-that nerve which supplies the lesser number of digits, and the greater number of the deep scated muscular parts aecompanies that artery wbich supplius the greater number of digits while that uerve which is distributed to most of the digits follows that artery which serves the fewer of them. In the faet, too, of both nerves and arteries dividing into digital branches near the interdigital clefts for supplying the conitignous sides of two digits, a similarity in the anatony of the haud and foot is cvident, and, morcover, the arteries and nerves on the dorsum of each member are of smaller size than those at its opposite aspuet.

The posterior tibial artery may be tied behind the imer ankle, on being laid bare in the following way: $-A$ curved incision (the concavity (irwurds) of iwa inehes in length, is to he made midway bet ween the tendo Achillis and the aukle. The skin and superticial tascia having been divided, we expose the inner amular liganent, consisting of two layers, the deeper of which will be found enclosing the vessels and nerve in a enual distinet from that of the tendous. Their fibrous sheath having been slit open, the artery will be seen butween the venie comites, and with the nerve, in general, belind it.
When any of the arteries of the leg or the foot are wounded, and the hamordage cannot be commanded by colupression, it will be necessary to search for the divided ends of the vessel in the wound, aud to apply a ligature to troth. The expecticicy of this nensure must hecome fully uphrent when we consider the frequent anastomosts existing between
the collateral branches of the erural arteries, and that a ligature applied to any one of these ahove the seat of injury will not arrest the recurreut circulation through the vessels of the foot.
A general survey of the form, eourse, and distributiou of the erural arteries will explain the amatomieal prineiple on whieb the foregoing observation is founded. The three erural arteries-anterior and posterior tibial, and peronaal-spring in the popliteal space from the one main trunk, and following their several courses down the leg, terminate in the foot, where they communiente by inoseulation with enelh other. In this particular the vessels represent a cirele, of which, if any part be severed, the issue of the arterial current must necessarily take place as well from the patent orifice of the distal part as from that of the proximal, though it be truc that the flow from the latter, as being direct from the parent ressel, must occur with greater foree and speed than that from the former, which only receives its blood indirectly through collaternl chamels, in which, owing to their small size and frequent branching, the leart's impulse to the blood must consequently be weakened. This fact is obscrvable in all cases of rounds of arteries-the flow through the distal portiou of the divided vessel not occurring in the manner of saltation, but uniformly, like that from an opened vein. But thougl, as a prectutionnry measure, the deligation of hoth ends of the divided artery sbould, in all instances, be adopted, it is the that the necessity for it is less urgent in respect to the crural arterics than those of the forearm; for in the latter the anastomoses of the vesscls are not only more fiequent, but by more considerable branehes than are found in the leg. The peronazal artery whiel represents the ulnar does not (like the latter vessel which gives of the digital branches and frecly anastornoses with the radial, in the palu and elscwhere) joiu any considerahle branch of the posterior or anterior tibial in the foot, hut expends itself hy hrauching over the external malleolus and onter side of the os caleis. The posterior tibial, which represents the radial, is (unlike the latter vessel, which hut partially supplies the hand and freely annstomoses with the ulnar) ahuost the only source of supply to the structures in the sole of the foot, and ouly presents, as the most notable point of anastomosis with the otber two vossels, that (the ramus communicans) whieb joins the branch of the dorsal artery of the foot through the first intcrosseous space of the metatarsus. Hence, of the crural arteries it may be said, that when any of them bas become the subject of deligation, not only is there a less prohability of recurrent hemorrhage, hut that, its direct circulation being arrested, the parts which it was destined to serve have hut a very few other sources of support.
Of the ligamentous apparatus whieh connect the bones of the foot to eaeh other, and the foot, as a whole, to the bones of the leg, a few general remarks will suffice for present purposes. Like the ligaments which biud together the other joints of tbe skeleton, those of the foot indieate the motions which its joints can admit of; but, in addition to this, the liganents of the foot show, by their strength at particular positions, and especially at the plantar surface, that they are intended to serve another use-that of sustaining the weight of the body where the bones, instead of standing in the ereet posture, perpendieularly end to end, in tbe line of gravity, as the condyloid head of the fenmur does on the lead of the tibia, jut from that line like the walls of an arcl, and require binders, in the absence of buttresses, to maintain them in their integrity. The tibio-fibular articular facet is apphed vertically to the upper surface of the astragalus, and the two malleoli projceting downwards on cither side of the joint, admit of but a slight degree of latemal motion; and here we find the lateral hgaments binding the ankle-joint together, while anteriorly, in order to admit of the full extension of the foot, a restraining liframent does not exist. The anterior and posterior divisions of the external lateral liganent are horizontal between the malleolus and the astragalus, and do not, therefore, limit the flexion und extension of the joint, whicl is designed priucipally for those motions, as is further rendered evident by the position of the flexor and extensor muscles. While the astragalus, situated thus directly under the tibia, supports the weight of the body in the line of gravity, we find, on the contran'y, tbat the astragalusarticulates with the scaphoid bone in front, and with the os calcis bolow aud behind; both these latter boucs thus projecting in opposite directions-autcriorly and posteriorly-from eaeh other, with a tendency of the astragalus, from superineumhent weight, to sunder them still furtber, and thereby flatten the areh of the foot, which it must do (in the same way as pressure upon the are of a bow would flaten that arc, by further separating its extremes, but for the cord whiel eonnects and sustains thenu) were it not for the presence of the strong plantar liganents, whicb prevent that oceurrenee. At the dorsum of the foot the tarsal bones (the seaphoid eunciform and cuboid) are broader than they appear at their plantar aspect: like the stones
of an areh, they are eut wedge-shaped, and being hound tomether by the ligaments; they thus secure the convexity of the instep, hy whieh the coneavity of the sole results. The ligaments on the dorsum and sides of the foot form, together, a woof of fibrous harids, whieh connect in every dircetion the contiguous bones; at the plantar surface the same bones are, in a similar manner, connected by short bands crossing from one to the other, and hetween them there are interosseous ligaments. But in the sole of the foot we find, in addition to these, eertuin ligaments of remarkable size and strength, whieh demand especial notiec. The calcaneo-euboid ligament consists of two layers of faseieuli-a superfieial and a deep one,-of which the former (ligamentum longum plantex) is extended between the lower surface of the anterior part of the os caleis and that of the euboid hone, from which its forose are continued forwards to be conneeted, also, with the hases of the five metatarsal bones, while the deep faseiculus, broader than the other, passes direetly from the os calcis to the euboid. The caleaneo-scophoid ligament, short, but remarkably strong, attaches the os ealeis to the seaphoid hone, and, lined ly the synovial membrane on its upper surface, forms part of the articular fussa which receives the anterior facet of the astragalus, and effeetually supports this hone under the weight of the whole body, at the same time that, with the long plantar ligament, it prescrues the arch of the foot, and admits of a certain degree of clasticity, to obviate the effects of sudden shoeks. Considering the skeletal foot, thus perfeeted as to its meehanism-being a hasis of support by reason of its broad arch; an elastic basis by reason of its consisting of uumerous asseous elements bound together by ligaments, and yet in some degree articularly moveable on each other; and an instrument of progression by rcason of its heing placed at right angles with the bones of the leg, beneath which it may he moved like an horizontal lever of the second elass,-it might, in regard to the first-mentioned fitness (the two others being additional fitnesses, the plurality of which marvellously charaeterise the construction of all organie design), be not inaptly likened, by its forn and properties, to the half of a shallow dome standing on its semi-cireular hasis, as represented by the anterior ends of the metatarsal bones in front, the os caleis behind, and the metatarsal hone of the little toe, with the euhoid bone and os calcis outside. Of this semidone, the open side (arched, and rising from its extremes) is represented by the tarso-metatarsal span of the great toe, and the hones comprising which are the more enassive, as heing the elief support to the superineumbent weight. That this is the geonctricul signification of the form of one foot-that it is as a half of an entire concave fignere,-is further proveable on setting the two feet in apposition by their inner sides, when we see them constituting a perfect vault, of which the gravitating centre is hetween the two astragali, and the line of bipartition of that symmetrical entirety is ranging, antero-posteriorly, between the inner borders of both fect.

Having those ideas as to the functionally perfect lorin of the foot, we are emabled, while eontrasting with it the various kinds of its deformities, to estimate these in their true character, according to the proximate anatomical causes to which they are attributahle.
The foot is subject to various malformations-congenital and pathological—which admit, with more or less probability of a suceessful result, a treatment hy operative measures. The eongenital malformations present greater varieties than the pathologieal, as respects the slape of the memher from distortions of its skeletal parts. Of the latter kind the following are examples: a flattening of the foot, in which the instep is depressed, and the plantar arch ohliterated, owing to a lowering of the tarsometatarsal bones to such a degree that they oceupy the same plane. The struetures principally at fault in this condition of the foot are the inferior ealcaneoecuhoid and seaphoid ligancuts, which have yielded heneath the weight of the body, and allowed the astragalus-the key-stone of the plantar arch-to be impelled downwards, as a consequence of which the inner malleolus touches the ground, in the erect posture, while the outer border of the foot appears in some degree turned up. For such a ease, if any henefit is to be derived from a supporting apparatus, it is evident that the erect posture mist frustrate the desired result, while the part to he supported hy the apparatus, and the parts from which it supports, are parts of the same memher, all hearing down together. In this remark I indiente the inefficiency of every apparatus which I have scen, intended for support aud the rednetion of the displaced parts. Another not uncommon deformity is the distortion of the toes, one or more of them being permanently elevated over the others, and all impressing each other to such a degree, that their natural forms are wasted, and their separate actions obstructed. The eause of this state is said to be, in most instanecs, a contraction habitually exereised by the extensor museles; and the remedy proposed,
on that helief, is a division of ane or more of the tendons of those mnseles. But if such a defirmity be attribut:ible to a long-continued eompression of the parts, it appears to the that not the tendon, but the fibrous structures of the digital joints, are in the first place at fault, by laving become thickened from friction, and fixing the digits in the position described. A permanent contraction of the toes does not give rise to such ineonvenience as the like state in respect to the fingers; for the quicseent position of the former is one rather of flexion than extension, simee flexion is the aetion of the toes, whether in stmating or in progressing. Coms and lumions are usually found connected with the digital joints, hecanse pressure is more connonly exorted on thuse larts; and the joint becoming thereby partially dislocated, tho conds of the bones forming it project. Those aftections may arise in connexion with any joint of the skeleton, as instaneed in individu:nls whose oceupartions subject this or that particular part of them to rongh usuge. A eorn or a bunion is a pathologienl state only when it is iuflamed: in the first stagres of their formation they are lut provisions of uature to obviate friction,- the integument of the part beomes thickened, and between it and the joint a bursa is produced, to facilizate mortion. Such furnations are natural to some of the lower animals. The cullosities of the camel are examples.
The collgenital deformities of the furt generally involve the whole of its osscous parts. In looking for the culuse of thoze deformitien, the ultimate fact appears to me to be an imperfect-an irregular development of the hones of the foot, souse of which increase to unnaturally larger proportions than others, and the places which the latter, stunted in grovth, slould have oceupied, are intruded upoa by the former. As this condition is assumed in uterine life, the cause of the malformation ean be no other than dufeetive development of the bones primarily, and of the musenlar apparatus sceondirily; for the museles endowed ats origine with a power of tonie contractility, assume a length in the exact measure of the distance between their several origus and the distorted parts into whieh they are inserted; and their wusted, slortoned proportious, and risid elaracters, are due to the circumstance that the deformity, laving become fixed by the strengthening ligaments, renders the muscles incapable of that normal action which would iuerease their norual dimensions and power. Of the truth of this remark we find a proof in the immedinte effects of the operation of tenotomy. The distortion of the member is not inmediately reducible by the mere division of the tendons of the museles which are supposed to have caused it, though it be most true, that without such an operation, it would be in wain to endeavour, by the use of any guparatus, to overeome the resistanee offered hy the ligamentons structures of the joints, and that which arises from the ill-set coaptation of the articular facets of the hones.

The prineipal and extreme varieties of defornities of the foot are three in numher,-viz., lst, that in which the heel is permanchatly ele. vated, the tarso-metatarsal hones appearing in a vertical line with the honcs of the leg, and the phalangcal bones forming a right augle with the others, and hecoming alone the horizontal hasis of support in the ereet posture; 2nd, that in which the heel is permanently elevated, at the same time that the foot is twisted inwards, so that it rests on its outer side, the inner side and great toe not coming in contact with the ground in the ereet position; and 3rd, that in which the ferot, in the standing posture, rests on its inner side, while the outer side and heel are elevated from the ground. Of these complete malformutions respucetively, there are varietics of interwediate degrees. Of the three delormities, the second mentioned is the most common, the first less so. and the third but rarely met with. The first, which is I digitigrade foot, and termed talipes cquinus, presents itself of a form which (sup. posing it to be induced by museular aetion) udientes the ageney of the grent museles of the calf in elief, and aided by that of the peronnens longus muscle, whose point of insertion in the sole of the foot renders it a thexor; and the same may be said of the tibialis posticus, as also of the flexor communis and texor pollicis, for these, though exercising a special action on the toes, scrve, at the sance tiuse, to flex the whole frot, through the medium of the ankle-joint, when, as in progression, the toes are fixed in grasping the ground. The secoml, maned talipes tarity, as plainly indientes the muscles to whose netion the deformity correspond: the heel is elevated by the museles of the calf, whide the inner side of the foot is raised inwards by the action of the tibinlis antiens, zud in some measure also hy the extensor pollieis. The thivh, mamed eatipes verlynges, would appear to express (if of any muscles) the action of the peron:ens tertius aud hrevis; but of this deformity, more especially than of the others, it may be said that the purts chiefly at frult are the bonts and ligmonts. While the classes of muscles now noticed may be regarded as retuining respectively the several forms of club-fort, if they the not
prime agents in- inducing them-the action of the short plantar iniseles, and also a shortening of the plantar fascin, contribute in no small degree to the same defeets. The operation of dividing the tendons fore thuseles which are comsidered to be at frult, is to he conducted securding to the anatomical relations of the parts as ahove specified
Pesides the class of congenital malformations of the foot now noticed, und which are eharacterizahle either as deformities in respeet to one or more parts of the foot, or to that organ as a whole, there is nother very remark able class, in which they preacnt themselves either as exvess or defeet compared with the uormal nuuber of digits. The human hand, as well as the foot, give instances of this kind of aherration from the nsual type of sither member, and prore this type in respeet to the number (quinque) of digits to be but as a mean proportional. Of the two members, howver, the foot is that in which the greatest degree of excess of digits is linble to appenr, and as if it were more subject to the law of radiation in rogard to it sterminal appendagus than the hand is. The adult foot 1 have scen, more than once, exhilitiag digits eight in mumber (and have heard of an cexample of the organ having nine), all perfectly formed, with the proper number of phangeng. 'I'the metatarsal hones also were eight in number, and the tarsill row (including the cuhoid houe), with which those digits urtienlated in the usual form were sis in number, there having been five cunciform hones. In another instance, iu which there arpenred serm digits, and in another sin, each digit haring its proper number of phatanges, there was a corresponding number of metatarsal bones; and in that foot with seven digits, there were four cunciform hones with the cuhoid; while in that with six dinits, there was hut the normal number of three ennciform bones with the cuhoid. ln the dissection of euch of those feet, the tendons of the extensor and flexor musches equalled in number those of the digits, and were attached to them in the ordinary way, while the foot, as a whole, retained its normal configuration aud functional fitness; and its fellow of the opposite side presented in all respects the same peculiarities. While such ure the anomahies which, eompared with the normal form of the memher, may he regarded as examples of simple excess, and having the surplus parts anatomically constituted like the normal parts, there wecur others which, compared with the nomal form, represent instances of simple defiect. The foot, like the haud, oceasionally exhinits hut four digits, three, or only tuo, and even hut one, with a corresponding reduction in the momer of the metatarsal bones, and a similar reduction in the tarsal row to which these are immediately comected. Thus, then, in a deereasing series $(9,8,7,6,5,4,3,2,1)$ of digital appendages we nark the normal number of foe as nppearing midway; and while, in comparison with five, we account all excess and defect of digital development as anomalous in the hmon form, we have hut to extend our comparison throngh the lower species and we shall find that all the varictics of their corresponding organs, hoth normal and abnormal, simply result as different proportionals of the selfsame serics.

On considering in how fur the foot is rendered less functionally efficient necording to its quantitive losses hy amputation, we shall find that the parts owing to whose remoral the hand becomes less effective as a prchensite organ, are the analogues of those by whose removal the foot is dumived of its fitness as an organ of progression. What the thumb is to the hand the great toe is to the foot, namely, a part which, per se, surpasses in value any other single digit, and which increases in value according to the numher and proximity to itself of those which accident or design leaves remaining to the member. The relative value of the ligits of the fout is indieated in their relative proportions and positions. The great toe is the appendage of the more massive and the longest tarso-metatarsal base, which at the imer side of the foot forms the highest part of its arch, and is directly under the tilia which transmits the whole waight of the holy; whereas, according as the other toes, with their respective tarso-metatarsal hases, are removed more nud more external to the direet line of gravity, their proportions, both as to length und strength, are gradually diminished, and in a corresponding grada.
tion the arch of the foot becomes less and less marked, till the bones forming its outer side lie parallel with the ground. In this configuration we may judge of the velative functional value of the digits and their respective tarso-metatarsal hases: that it is in the ratio of their quantitive degeneration from within outwards, and so, likewise, is the loss which the foot sustains by the deprivation of them. While this ohservation holds true in whatever degree the memher may require to be truneated, it lends support to the principle-that in amputation of the several parts of the foot as much as possilile of the member should be spared, with a view to render it still as effective a lever as may be, under the action of the muscles, and as an organ of support.
When the last phalunx of the great toe is removed, the long flexor tendon heing then divided, the power of flexing the first phalanx is lost, white this remains still under the control of the long and short estensor, which, having no antagonist (for the short fiexor cannot efficicntly serve that office), project the first phalanx permanently upwards, and therehy render it of little use for progression. If the tendon of the long flexor happens not to retract altogether, it contracts adiesions to the first phalanx, and may act upon this part, and thus counteract extension. Wheu the first phalanx of the great toe is amputated, the tendons of all its muscles are divided, without, however, afiecting the uses of its metatarsal hone; for this may still maintain the arch of the foot for support and for leverage in progression, though the latter use is materinlly diminished hy the loss of its phalangeal appendage. But when the metatarsal bone is also amputated, the foot, by the loss of its sustaining arch, undergoes a privation, both as respects its power of progression and support, to a greater extent than it would if, while the metatarso-phalangeal quantity of the great toe remained entire, it were deprived of all the rest. Of the other digits it may be remarked, that when the last phalanx of cither of them is amputated, though both the long extensor and flexor teudons are divided and retraeted still, hy the insertion of the tendons of the short cominon flexor into their seeond phalanges, these obey the action of this muscle and hold their natural position.

In eases requiring transverse amputations of the foot through its several segments, due regard is to he had as well for the use which the remaining part may serve, as for the entire removal of the discased or mutilated part. When all the digits are amputated at the metatarsophalangeal joints, the tendons of all the muscles which moved them are divided, and those tendons, contracting comexions at or near the cicatrised wound, still act as extensors and flexors of the foot, which, having its complete arch and the entire length of its lever still prescred (for the digits constituted no part of cither), acts yct as a very etlicient organ for support and progression. All further degrces of truncation of the member reduce it to the claracter of a mere moveable pivot, and the whole limb to that of a jointed pedestal whose progressive motion is a halt. When the foot is reduced to the tarsus, this part is moveable by the action of the gastrocnemius, the solaus, the peronazus, and the anterior and posterior tilial mascles; but those muscles, and particularly those which have had tbeir insertions into the metatarsus and phalanges, undergo a wasting according as they are less required for eflecting the motions of progression, as performed by the perfeet member. When amputation is performed at or immediately above the ankle-joint, all the muscles which have their origin in the bones of the leg are, of course, rendered inoperative in consequence of the removal of the foot which they were destined to move through the medium of the anklc-joint, and, in process of time, an almost total degeneration of them is the consequance. This degencration is manifested in the solmus; but the gastrocnemius, having its origin in the condyles of the femur, and its severed tendo Aebillis hecoming united to the bones of the leg at or near the site of amputation, retains in great part its muscularity as a flexor of the knce-joint, and as one of the antagonists of the extensor muscles inserted into the tulicrele of the tilia through the medium of the patella.

COMMENTARY ON PLATE LII.

ANEURISM OF THE COMMON ILIAC, EXTERNAL ILIAC COMMON FEMORAL, FEMORAL ANO POPLITEUL ARTERIE THEIR RELATIVE ANATOMY AND OPER TTVE

In descrihing aneurisms of the neck and upper extrenity, I offered an explanation of their causes form effects $_{1}$ symptorns $_{1}$ and treatment ${ }_{1}$ according to the views 1 entertain respecting the circulating forees. The same views are applicable for the explimation of the ancmisms of the iline region and lower extremity now to he described, As to the greater frequency of ancurism at particular localitics than elsewhere, it seems to me that there exists no other assignoble reason for the fact than that the nearer the artery is to the heart as the prime nud sole mover of the arterinl circulation, the greater is the monentum of the motionary blood (for it is true that in this particular the vital current is sulservient to the physical law, and that hence the conts of the nortery are suljected to the greater degree of distending force. This condition heing unchangeable while no rationale can be advanced in regard to the question why a pathological degeneration of the coats of an artery shonld occur at one place rather than at another, the premises lead to the conclusion that as disease has no settled clection for any one particular vessel more than for another, so the nearer the affected vessel is to the heart's force, the sooner, and cousequently the more frequently, will it become the sulject of ancurismi whose shape is the substuntive type of distension. Conformally with this doctrine, we find that aneurisms of the aorta and primary branches are of more frequent occurrence than in respect to any of the other branelies of the arterial system. But while we are recognising the operation of the law ${ }_{1}$ that precisely in the ratio of the square of the distance from the heart is the circulating force of this organ expended, and expecting, thercfore, that the farther the vessel is removed from the hen't the less liable to aneurismal swelling it should be, certain pathologieal facts as recorded ${ }_{1}$ seem to be at variance with that doctrime. It is true ${ }_{1}$ however, that the arteries of the leg and foot t_{1} the forearm and the hand, are less subject to aneurism than any of the other arteries, and this answers directly to the expectation; hut not so with regard to arterjes intermedinte hetween the thorax and the lower segments of the limbs. Next in frequency to aneurisn of the norta and its primary hranches, it is stated, upon extensive experience, that aneurism of the popliteal artery occurs; next to this vessel, the femoral; next to the femoral, the carotid; next to this, the suhclavian; next, the axillary; next ${ }_{1}$ the external iline ${ }_{i}$ then the imominate: and of the hrachial, the conmon iliac, the anterior tihin, the internal iliac, temporal, ulnar, perinæal, internal enrotid, radial 1_{1} and palmar and plantar arteries, their haliility to the disease is less and less cormon, according to the order in which they are now mentioned. This seeming irregularity as to the more frequent seat of aneurism attaching to arteries hetween their nortic common origin and their terminal distrihution not being possihle to be accomted for according to the known law of tho circulating force above mentioned ${ }_{1}$ has led the pathologist to seek for a
cmuse of it in the structure of particular arteries, and the poplitenl, mure especially, has undergone an attentive examination. Accordingly, the artery most subject to the disense has presented itself, under the microseope, in the opinion of some, as having a cont of peculine structure ("sclerores"), which is "dense, hard, fruyite and scaly y_{1} and is the sent of calcareons, or steatomntous, or cartilaginous deposits, which facilitate the formation of aneurism." But as this coat, as stated hy other observers (and with good reason), does not ${ }_{1}$ in reality ${ }_{1}$ exist they acconnt for popliteal ancurisu in either the violent extension or flesion of the leg fraying the coats of the vessel, and thus originating the disease. Of these two causes, however, the one would appear no less inappreciable than the other. If the sclerous cont of the artery most linble to aneurism is the cause of that disease in it, that coat (supposing it to exist anywhere) uight be expected, like the other coats of the arterics, to exist everywhere, and all arteries he consequently equally prone to the disease: and if the motion of flesion or extension, evell to the result of dislocation of the joint t_{1} does not ciluse the disease. Why sbonld a less violent motion be a cause of it? or more frequently one in respect to the popliteal space than at the hend of the ellow? Thus the problem, defying a pliusible solution under cither mode of computation, the facts as effects, are to be handed as hest they may, irrespective of their canses, when these eannot be uuderstood. And fortunately y_{1} in the ease of an aneurism, wherever situated, or in whichever place it more frequently "ppears, the knowledge of such at cause has not a direct benring on the principle according to which the surgical treatment of the discasc is to be suceessfunlly conducted.
In the operative treatment by deligation , of an aneurism, wherever $_{1}$ situnted a condition of the affected artery presents itself which may bu said in all enses to require the conduct of that measure to be different from that which scrves well enough for exposing the vessel in the hody, in which no :meuristu exists. 'Che tumour more or less displawes the vessel from which it arises and $_{1}$ having the same effect with regard to contiguous parts, renders our knowledge of normal relative unatomy of less account than might be expected. This disadvantage, however, which would he in full force were it neeessury to place the ligature on the artery at the seat of the discase is not only not incurved by tying the vessel at some distance ahove the aneurism, but the operation here performed has the advantage of the ligature being removed from the diseased part. In order to insure tris advantage, however, there are other considerations not to be lost sight of: if the case will admit of it the ligature should he placed below the origins of the collateral brauches, so as to give course to as full an amount as possible of the anastomotic circulation n_{1} upon whieh the inaintenanee of the vitality of the limb alone depands after the direet current has been arrested; and hesides

FigURES Of Plate LII.

Figure 1.-The common ilian arteries, D O, are aneurisman, the right vessel being more diluted than the teff. The aorth, \mathbf{A}, at its bifurcatiou, is distortent towurds B , the veun

 upper side of the anenrism aud the bifurcation of the conmon iliac artery, A, into the
brancles, B D, a ligature bas been phed. F, Anterior superior iliac spinous process.

a, Syuphysis pubis,- II, Fenornal veili-1, Pomaral intory. Close above Poupart's liganucht, the exterruli iline artery, A, begins to swell where the cpigastric and cirenmiflex ilise brancbes arise firom it in front, and where tho external
 Femoris artery arises; from its loverr side the femornl urtery passes of its nusual calibre; behind it is the femoral vcius, G, under compression; uul hroping closo to its innor side appears the spermatic coril, lurving the same relation to the anemrism as it usunnes in
 -1 , Surtorius musole, purtially overlapping the tumoar.
Froure 4.-An numuriem, E F, springs from the feworal artery, F \mathbf{P}, and oecupies a sitantion between thate ressel and the thigh-boue iu Berrpn's triangle. The nucurism is remud-shnyled, wnd lus tho mprover part of the femoral artory pussing into, and the lowor wart of that vessel prasing froms, its inuer sile, which listorts in murds the fumoral vein, OG. The profinudn artory, D, turns down helind tho tumon'; the sarturing, J J, lies

 -A, Extorna
Fioune oj.-The popliteal artery is menemrisual. The thumour, I , is pyriforiu, dilativg wradullisy alownwards from the opening for the fomoral resesel in the addactor magrius teadon, C . The poplitenl veio, J, appearing of the outer sile of tho npper pant of the tumour, ppeses belore it lorer duwn, and is under compressios. The great esintic norve,

N , and its bratuches, P 0 , wre stretebed over the lack of the aucurism, while thin is embrneed on citter vide hy tho beals of the gustrocnemins musele in this cmse tho femorul artery, E, is represented ns doublo F (t, nud having the two divisious of tho vessel mited again, E , where it is about to pass througl the oprening iu tho sudurtor magrons tendot. The point at which tho fenotal artery lividos is immelinterly below tho origin of the prolimulus branch. The two thivisions of the artary are of eqpulel calihre ; ligntare is phacel on tho midillo of tho inuer oue. Tho fimoral rein, II, pasace domio on the inner side of the immer diviion ol the urtery.-A, Articularhead of the right frmurs
 teal artery diviling into crual birmeteres. I , Fihlula- Ml , Tilius

 extemal to tho upher part of the turionr, passes in 1rant of it bethe, azd is compreasen netween it and the tone, outcr side; The vertical dianuetur of the nururisan extends from a poinc, B, close

 - E, Lon K Tondon of sumimenlrunosus musele cut, and turaed hown with \mathbf{L} M, the muscle, - K, Tendom of scammenibrmmose
 chero it conects the two is or its normal wize. The mpper thmour, D , is the sanaller, nud is situantel behind the trimmular flat sarfive of tho fromur ulove the condyles, F II,

 of in lenoth leforv it livides into the crund bmuchear The nerves were atrecthol over
 onter side of the mipler ancurism, bends over the posterior onter surfiec, fit, of the luwer
 musclo out and turrace down.- $\mathbf{1}$, Hesd of libulth

This we have to choose, as a site for the operation, that place whereat the vessel may be more readily exposed without, at the same tine, involving other important orenans. In tying the artery below the upper anastomotic branches, we leave the recurrent branehes ns well fully efficctive, whereas, in tying the vessel above hoth sets of bruches, we ent off the eirculation both collateral and direet; and this is a result which at onec must determine the proper situation of the ligature, even with those who would insist that its close proximity to the clistal side of a collateral brauch is a cause of its "disturhance." But as this cruse is by no neans proven, while other more obvious eauses may be reenguised, the certnin result, not the uncertain, must influence the operator:

Ancurisun of the common iliac artery (Fig. 1) may he regarded, by reason of its situation, as not less ungovernable than meurism of the abdominal aorta. The size of the common iliae, its almost inaccessible situation, and its close relationship with importart organs, justify this eonelusion in regard to either of the vesscls; but of the two, the right one, as resting on the origin of the vena eava, and on the ends of the common iline veins, is the more complicated. The ancurismal swelling, even in an early stage, involves the whole length of the artery, and in the future stages of its increase it subjects to more and more pressure the large veins in eonnexion with it. The peritonsum invests the whole tumour, whatever be its size, und that membraue has to he preled from the iliae fossa and fron the surfnee of the aneurism, in order to reach it in an operation with the objeet (if this he a reasonable requirement) of not opening the puritoneal sae; but this casualty is of eomparatively small aceonnt in presence of other dangers which are inevitable. The whole length of the eommon iliae being from the first included in the neurism, there is no roon for the application of a ligature to it ahove the disease, and consequently, in order to arrest the cireulation through it, it whereby uecessary to tie the lower end of the ahdominal :orta, common ihae artery also, and thus the lower limhs and the pelvis, and its orgnas (except the rectum, supplied by the inferior mesenterie), will be deprived of uearly all sourees of support.
Aneurism of the external iliac artery (Fig. 2) renders the operatiou of deligation more or less serious, and promising a lesser or greater proba. bility of a suecessful result, reeording to the stage of its development, and also the situation nt which it arises from the vessel. If the aneurism bo as yet small, and close to Poupart's ligament, the ligature can he safely npplied to the ressel at its mid-point, or between this and it origin. Even when the aneurism (if small) attaches to the middle of the natery, it will admit of the npplication of a ligature to the upper end of the vessel; hut if the aneurism spring from the upper third of the vessel, it will then he required to tie the eommon iliac. If the aneurism propect from the outer side of, or from the forepart of the vessel, it will be more difficult to reneh this nt the point where it should he tied; but when the aneurism projeets from the inner side of the artery towards the median line, the vessel will be found but little distorted from its normal situntion, and it may be almost as readily exposed as if it were in a state of health. When the aneurism is in the situation last mentioned, the external iliae vein will be invariahly found helind it; if it be near Poupart's ligament, the epigastrie and cireumflex ilise braneles will arise from it; and if it be near the bifurcation of the eommon ihac, the ureter will cross invards over it, whilc, perhaps, also, the intemal iliae will he found to he involved in the upper part of its periphery, thus nceessitating that the operation should he condueted in reference to the common iliae.

Aneurism of the conmon femoral artery (Fig. 3), even though small, involves the whole of this part of the main artery. This aneurism is peculiarly eircumstaneed in regard to its iuvestments: it is crossed by Poupart's liganent, aud the part of it ahove this structure is eovered by the peritomem, while below the ligament the sleath of the vessels lorms a eovering for it, and, also, it is hound down by the fascia lata. When the epigastric and cireumfles iliac brauches have their origin from the usunl part of the external iliac, that is, close ahove Poupart's ligurent, they will he found arising from the upper part of the tumour; nukl, in ahnost all instanees, the profunda artery will have its origin from the outer side of the tumour bclow the ligament. This anewisin oceupics the situntion of a femoral hermia when the faseja, repressing it externally, gives it the direction of the saphenous opening. Then the spermatic cond will hang close ulong its inner side; the adductor wuscies will be behind it; the surtorins on its onter side, and Poupart's ligament ahove it : but the common femoral vein las a diffurent relation to the ancurism and to the hernia; in the former case, the vein will he either on the inner side of, or behind, the tumour, whereas, in the latter, the
vein is invariably on its outer side. Whatever be the size of the eommon femoral aneurism, it necessitates the appliention of a ligature to the extermal iliae.
Ancurism of the femoral artery (Fig. 4), if happening low down in tho thigh, will admit of the application of a higature to the vessel from which it springs, with less sncrifiee of the collateral branches than if it he situated close below the profundas bruch; for in the former case there will be a healthy intervnl of the vessel between the disense and the profundus, where the ligature nay he placed; whereas, in the latter case, it will be neeessary to tie the common femoral, at the saerifiee of the profundus braneh, as also of the epigastrie and eireumflex iliae, should these arise (as they frequently do) from that hanch, or from the eommon femoral close to its origin. At whiehever part of the femoral artery the aneurism is developed, the vein will be found elose to its iuner side or behind it, and may of the bramehes of the anterior erural nerve erossing down over it.
Anteurism of the popliteal artery (Figs, 5, 6, 7) generally, in its final stages of increase, involves the whole leagth of this portion of the vessel, and therefore requires that the operation of deligation should he eonducted in reference to the nitery in the forepart of the thigh. This necessity, indeed, is occasioned eren though the aneurism he in its prumary stages, becunse of the difficulty of reaehing the vessel in the pophiten spmee above the nucurism, and the prohalility of finding it, when exposed, in an unsound state here. Added to these considerations, the fact of the artery being more readily aecessihle in the thigh, where the lignture can be upphed at a distance from the disease, with the same effect, in regard to command over the cireulation of the tumour, and with greater advantage in respeet to the preservation of the eollateral cireula. tion, wake altogether a sum of persuasive evidence in favour of performing the operation in the forepart of the thigh. Of this aneurism (more espeeially, perhaps, than of others) the relative position requires partieularly to he studied, in order to exphin the effeets oecasioned hy pressure on neighhouring parts-the veins and nerves,-and also to aid in its diagnosis. Before it attains to any eonsiderahle size it does net ocension a tumour of very olvious charaeter, as explanatory of its nature, for the
adipose adipose tissue surrounding it is readily displaeed or hecomes absorbed, to a plane posm moles standing apart from either side of it, and projeeting situation masy arise to that of it, mask its presence. The tumour in this ahscess arise from other causes than that of aneurism; sueh as an lation of the fluid in one or other of the hurse, in hoth of which ease the sae lying in eontaet with the ar the hurse, in hoth of which eases pulsation communieated to it from that yessel. The relative position whieh the great sciatie nerve and its hranches has in respect to the artery in its normal condition is not ehanged in regard to the aneurisun-the posterior tibial nerve descends perpendicularly hehind $i t$, and is that which, from the inereasing size of the tumour, is liahle to be stretehed and eompressed, causing a numbness in the leg and foot; while the peronaal uerve, passing down over its outer side, is not so subjeeted to the same foree. The popliteal vein oeeasionally assumes a different relative position to the aneurism from that which it holds in respeet to the artery undiseased: the vein in some instunees is superficial to the aneurism, and foreed into apposition with the posterior tibial nerve; hut generally it is deep on the outer side of the nneurism, and frequently hetween this and the hone, in whieh position especially it undergoes eompression, and gives rise to codena of the leg aud foot. When a rupture of the aneurism happens, the opering more frequently occurs at its posterior surfaee than elsewhere, for that is the side whieh most admits of distension and a thinning of its walls; in front the hone represses its distension, and the flexor muselcs aet in the snme way at its sides. A single aneurism of the artery is what happens for the most part in the popliteal space; but oecasionally two aneurisms cxist, and of these the lower one is always the larger, for, as noticed in a former plaee, it is the lower which is first formed, and having attained to large proportions and deposited a eoagulum, it induees the formation of the upper one hy the obstruction which it oecasions to the cireulation of the vessel, which is likewise the renson why an aneurism oeeurring seeond in time to the first ean never be below the one first formed. Wheu the ancurism is so large as to occupy completely the poplitenl spaee distended heyoud its naturnl eapacity, it involves the origins of the five articular branehes; and when the femoral vessel has heen tied for the disease, the direct cireulation is still further arrested in consequence of the ligature heing above the anastomotic hraneh. The collateral currents can then only be maintained through the museular branehes, and these are they which, in a postmortem examination of the limb of patients who have survived the operation, are found to be enlarged.

CONCLUDING COMMENTARY

THE FORM AND DISTRIBUTION OF THE YASCULAR SYSTEM AS A WHOLE-ANOMALIES--RAMIFICATION. ANASTOMOSIS.-SIGNIFICATION OF THE PORTAL SYSTEM, THE LIVEL, AND TIIE SRLEEN

I.-Tne heart, in all stages of its development, is to the voscular system wbat the point of a circle is to the circumference-namely, at once the beginning and the end. The heart, oceupying, it may he said the ecntre of the thorax, circulates the blood iu the same way, hy simila channels, to an equal extent, in equal pace, and at the same period of time, through hoth sides of the body. In its adult normal condition the licart picscuts itself as a double or symmetrical organ. The two hearts, though united and appearing single, are nevertheless, is to their respective cavities, absolutely distinct. Each heart consists again of two compartments-un auricle and a ventricle. The two auricles are similar in structurc and form. The two ventricles are similar in the same respects. A septum divides the two auricles, and another-the two ventricles. Between the riglte auricle and ventricle, forming the right heart, tbere exists a valvular apparatus (tricuspid), by wbich these two compartments communicate; and a similar valve (bicuspid) admits of communieation betwecn tbe left auricle and ventricle. Tbe two bearts being distinct, and the main vessels arising from them respectively being distinct likewise, it follows that the capillary peripheries of these vessels form the only chamels through which the blood issuing from one heart can enter the other.
II.-As the aorta of the left heart ranifies tbroughout all parts of tbe body, and as the countless ramifications of this vessel terminate iu an equal number of ramifications of the principal veins of the right heart, it will appear that hetween the systemic vessels of the two hearts respectively, the capilary anastonotic circulation reigns universal.
III.-The body generally is marked by the medinn line from the vertex to the perinxum, into corresponding halves. All parts excepting the main hloodvessels in the neighhourhood of the hoart are naturally divisible by this line into equals. The vessels of eacb heart, in heing distributed to both sides of tbe hody abke, eross cach other at the median line, and heace they are inscparable according to tbis line, unless hy section. If the vessels proper to cach heart, right and left, ramified alone within the limits of their respective sides of the body, then their eapillary anastomosis could only take place along tbe median line, and here in sucb case they might he scparated by median section into two distinct systems. But as each systen is itself donhle in hranching into both sides of the body, the two would be at the same time equally divided hy vertieal section. From tbis it will appear that the ressels belonging to each beart form a symmetrical system, corresponding to the sides of the body, and tbat the capillary anastomozis of these systemie veins and arteries is divisible into heo great fields, ouc situated on cither side of the median line, and touching at this line.
IV.-The vessels of the right heart do not communicate at their capillary peripheries, for its veins are systenic, and its artcries are pulmonary. The vessels of the left heart do not anastomose, for its vcins are pulinonary, and its arteries are systemic. The arteries of the right and left bearts cannot anastomose, for the former are puhnouary and the latter are systemic; aud neither can the veins of the right and left hearts, for a siunilar reason. Henee, thereforc, there can be, between the vessels of both hearts, hat two provinces of anastomosis-viz, that of the lungs and that of the system. In the lungs, the arteries of the right heart and the veins of the left anastomose. In the hody generally (not excepting the lungs), the arterics of the Icft heart, and the veins of the right, anastomose; and thus in the pulmonary and systemic circulation, each heart plays an equal part through the medium of its proper vessels. The pulmonary vessels hear to the systenic the same relation as a lesser circle contained within a greater; and the vessels of each heart form the half of cach circle, the arteries of the one being opposite the veins of the uther.
V.-The two hearts being, hy tbe union of thcir similar forms, as one organ in regard to pluce, nct, lyy an ayreement of their corresponding functions, as one organ in respect to time. The action of the aurieles is synchrouous; tbat of the ventricles is the same; that of the auricles and ventricles is consentancous; and that of the whole heart is rhythmical, or harmonious-the diastole of the auricles occurring in harmonieal time with the systole of the ventricles, and cice versid. By this correlative notion of hoth henrts, the pulmonary and systemic circulations take place synchronously; and the phenomena resulting in both reeiprocute
and balance each other. In the pulnonary circulation, the blood is acrated, decarhonized, and otherwise depurated; whilst in the systemic circulation, it is earhouized and otherwise detcrionated.
VI.-The circulation through the lungs and the systern is curried on through vessels having the following form and rclatire position, which, as being most usual, is accounted normal. The two brachio-cephalie veins joiuing at the root of the neck, and the two common iliac veins joining in front of the lumbar vertebre, form the superior and inferior venecave, by which the blood is returned from the upper and lower parts of the body to the right auricle, and thence it enters the right ventricle, by which it is impelled through the pulmonary artery into the two lungs; and from these it is returned (aerated) by the pulmonary veins to the left aunicle, which passes it into the left ventricle, and by this it is impelled tlrough the systemie norta, which branehes throughout the body in a similar way to the systemic veins, with which the aortic braucbes anastomose gencrally, On viewing together the system of vessels proper to each beart, they will be seen to exlulit in respect to tbe body a figure in cloubly symmetrical arrangement, of which the united hearts form a duplex centre. At this centre, which is the theatre of metamophosis, the principal ahnomal conditions of the hloodvessels appear; and in order to find the signification of these, we must retrace tbe stages of developmeut.
VII.-From the first appearance of an individualized centre in the vascular aren of the humen cmbryo, thant centre (punctunn saliens) and the vesscls immediately comected with it, undergo a phaseal metamorphosis, till such time after birth as they assume their permanent character. In each stage of metamorphosis, the embryo heart and ressels typify the normal condition of the organ in one of the lower classes of animals. The sereral species of the organ in thesc elusses are parallel to the various stages of change in tbe human organ. In its earliest condition, the hmman heart presents the form of a simple ennal, sumilar to that of the lower Invertebrata, the veins being comnected with its postcrior end, while from its unterior end a single artery emanates The caual next assumes a bent shapg, and the vessels of both its cuds hecome thereby approximated. The caunl now being folded upon itself in heartshape, next becomes constricted in situations, narking out the future auriele and ventricle and artcrial bulb, whiel still conmunicate with cach otber. Froms the artery are givern off on either side symmetrically five hranches (branehial arches), which areh laterally from before, outwards and backwards, and unite in front of the vertehree, forming the finture desconding aorta. In this condition, the hmman heart and vessels resemble the Piscean type. The nest changes which take pluec consist in tbe gradual suhdivision, by means of scpta, of the auricle and ventriele respectively into two eavities. On the sepraration of tbe single auricle into two, while the ventricle as yet remains single, the heart presents tbat condition which is proper to the Reptilian class. The interauricular and interventricular septa, by gradual development fiom without inwards, at length meet and conlesce, thereby dividing the two cavitics into four -two auricles and two ventricles-a conditiou proper to the Avian and Mammalian classes gencrally. In the eentre of the interanricular septum of the humau heart, an aperture (foramen ovale) is left as being necessary to tbe fotal circidation. While the septin are being completed, the arterial bulb also hecomes divided by a partition formed in its interior in such a manner as to adjust the two resulting arteries, the one in connexion with the right, the other with the loft ventricle. The right ventricular artery (pulnonary aorta) so formed, has assigned to it the fitth (postcrior) opposite pair of arehes, and of these the right one remaining pervious to the point where it gives ofl the right pulmonary branch, liccomes oblitcrated beyond this point to that where it joins the desending aorta, while the left areh remains pervious during futn life, as the ductus artoriosus still communicating with the descending aorta, and giving off at its middle the left pulmunary branch. The left ventrieular artery (systemie aorta) is formed of the fourth nreh of the left side, while the opposite arch (fourth right) is altogether obliterated. The third and second arehes remuin pervious on both sides, aftervards to become the right and left braehio-ceplatic arterics. The first mirir of arches, if not converted into the vertebral arteries, or the thyroid nexes, arches, if not converted into the vertebral aiteris, of hent aud primary
are altogether metamorphosed. By thesechages the hert
arteries assume the charater in which they usually present themselves at firth, and in all probohility the primnry veins corresponded in form, number, and distribution with the arterial vessels, and underwent, at the same time, a similar mode of metamorphosis. One point in respeet to the original symmetrical chameter of the primary veins is denon-strable-namely, that in front of the aortic branches the right and left brachio-cephalic veins, after joining by a cross branch, descend separately on either side of the heart, and enter (as two superior vene cave) the right auricle by distinct orifices. In some of the lower animals, this donble condition of the saperior veins is constant, but in the human ejecies the left vein below the cross branch (left brachio-cephalic) becomes obliterated, whilst the right vein (vena cava smperior) receives he two brachio-cephalic veins, and in this condition remains throngle ont lifc. After birth, on the commeneenent of respiration, the foramen arale of the interauricular septum closes, and the ductus arteriosus becomes impervions. This completes the stages of metanorphosis, and changes the course of the simple fretal circulation to one of a more complex order-viz, the systemic-pulmonary characteristic of the normal stute in the adult body:
VIII.-Such being the phases of metanorphosis of the primary (branchial) areles which yicld the vessels in their nommal shlult condition, we obtain in this history an explanation of the signifiention not only of such of their anomalies as ate on record, but of such also as are potential in the lav of developnent; a few of them will suffice to illustrate the meming of the whole number:-lst. The interventicular as well as the interauricular septum many be arrested in growth, leaving an aperture in the centre of each; the latter condition is natural to the human futus, the former to the reptilian class, while both would he abuormal in the human adult. 2nd. The heart may be cleft at its apax in the situation of the interventricular septum-a condition nathral to the Dugong. A similar eleavage may divide the base of the huart in the situation of the interamricular septum. 3rd. The partitioning of the Intbus artariesas muy occur in such a manaer as to assign to the two aortae a relutive position, the reverse of that which they normally occupy -the pulmonary aurta springing from the left ventricle and the systeatic aorta arising from the riyht, and giving off from its arch the primary brmehes in the usual order. 4 th. As the two aorte result from a division of the common primary vesed (buthus arteriosus), an arrest in the growth of the partition would leave them still as one vessel, whieh (supposing the ventrieular septum remained also incomplete) would then arise from a siagle veatriete. 5th. The dnchus artcriants may remain pervious, and while co-existing with the proper aortic arch, two arehces would then appear on the lift side. Gith. Tbe systemic normal aortic arch may be obliterated as far up as the innominate brauch, and while the Inctus arteriastes remains pervious, and leading from the pulmonary artery to the descending part of the aortic arch, this vessel would then present the appearance of a brauch ascending from the left side and giving off the brachio-eephalic arturies. The right ventricular artury would then, through the medimm of the ductus arteriosus, supply both the lungs and the eystem. Such a state of the vessels would require (in order that the cirenlation of a mixal blood might be carried on) Hat the two rentricles freely eommunicate. 7 th. If the fourth arch of the riyh sidt remained pervious opposite the peoper aortic arch, there would exist neo nortic urehes placed spmmetrically, one on either side of the vertelual column, and, joining below, would include in the cirole the trachen and asophagas. Sith. If the fifth areh of the right side remained purtious opposite the oper duches arteriosus, both vessels would present a similur arraugenent, as teo symauetrical ducti arteriosi co-existing with symmetrient aortic arches. $9 t h$. If the vessels appeared co-existing in the tue comitions last mentioned, they would represent four aortic arches, two ou cither silde of the vertebral column. 10 th. If the fouth right arch, busteald of the fuath left (norta), remained pervious, the systumic aortic arch would then be turned to the right side of the vertebral column, and have the trachea and essophagus on its left. 11th. When the bulbus artriesus divides itself into three parts, the tue lateral parts, in hecoming comected with the left ventrick, will represent a double ascending systanic corta, and having the pudmonary artery passing between them to the lungs. 12dh. When of the two oripinal superior vence cave the riyht one instead of the left suffers metamonphosis, the vena cava superior will then appear on the left side of the normal aortie arch. \dagger Of these malformations, some are rather fiequently mut, with, others very scldom, and others
cannot exist compatible with life after birth. Those which involve a more or less imperfect disclarge of the blood-acrating functions of the lungs are in those degrecs more or less fntal, and thus mature ahorting as to the fitucss of her creation, cancels it. Passing from the considerittion of those anomalies appearing in the vascular centre to that of the momalies of the systemic arteries, we shall find that these may be gathered together under the following explicative gencralization: tbeir deviations fiom the normal (usunl) type are simply in regard to length, and these simply are the result either of an unusually high or low position at wbich the main artery subdivides; this, though we write volumes upon the thene, is all the information derivable from their comparison to satisfy incuiry, whether our object be theoretical or
practical. practical.
1..-The portal system of veins passing to the liver, and the licpatic vcins passing from this organ to join the inferior vena cava, cxhibit in respect to the median line of the body an example of a-symmetry, since appearing on the right side, they have no counterparts on the left. As the law of symmetry seems to prevail universally in the development of organized beings, forasmuch as every lateral organ or part has its counterpart, while cvery central organ is double or complete in having two similar sides, then the portal system, as heing an exception to this law, is as a natural note of interrogation questioning the signification of that fact, and in the following observations, it appears to me, tbe nuswer may be lound. Every artery in the body has its companion vein or veins. The inferior rena cava passes sidelong with the aorta in the abdomen. Every branch of the aorta whicb ramifies upon the abdominal parietes bas its accompanying vein returning either to the rena cava or the vena azygos, and entering either of these vessels at a point on the same level as that at which itself (tbe artery) arises. The renal vessels also have this arrangement. But ail the other veins of the abdominal viscera, instead of entering the vena cava opposite their corresponding arteries, unite into a single trunk (rena porto), which enters the liver. The special purpose of this destination of the portal system is obvious, but the function of a part gives no explamation of its form or relative position, whether singular or otherwise. On riewing the vessels in presence of the general latr of symmetrieal development, it oecurs to me that the portal and hepatic veins form one continuous system, whicb taken in the totality, represents the companion veins of the arteries of the abdominal riscer:a. The liver under this interpretation appears as a gland developed midway upon these veins, dismembering them into a mesh of countless capillary vessels, (a condition necessary for all processes of secretion,) for the special purpose of decarbonizing the blood. In this great function the liver is an organ correlative or compensative to the lungs, whose office is similar. The seeretion of the liver (bile) is fluidform; that of the lungs is neriform. The bile being necessary to the digestive process, the liver has a duct to convey that product of its secretion to the intestines. The trachea is, as it were, the duct of the lungs. In the liver, then, the portal and hepatie veins being continuous as veins, the two systems, notwithstanding their apparent distinetness caused by the intervention of the hepatic lobules, may be regarded as the veins corresponding with the arteries of the catiue axis, and the two mesinteric. The hepatic artery and the hepatic veins evidently do not pair in the sense of afferent and efficent, with respect to the liver, both these vessels having destinations as different as those of the bronchial arteries and the pulmonary veins in the lungs. The bronchial artery is attended by its vein proper, while the vein wbich corresponds to the hepatic artery joins either the hepatie or portal veins traversing the liver, and in this position escapes notice.
X.-Thie heart, though heing itself the recipient, the prime mover, and the dispenscr ol the hood, does not depend either for its growth, vitality, or stimulus to action, upon the hlood uader these uses, but upon the blood eirculating through vessels which are derived fronrits main systemic artery, and disposed in capillary ranuifications throngh its substance, in the manner of the nutrient vessels of all other organs. The two coronary arteries of the heart arise from the systemie aorta immediately outside the semiluuar valves, situated in the root of this vessel, and in passing right and left along the auriculo-ventriculat furrows, they send off some branches for the supply of the organ itself, and others by which both vessels anastomose freely around its base and apex. The vasa cordis form an anastomotic circulation altogether isolated from the vessels of the other thoraeic organs, and also from
 of a numerons olless of malformations connected with the origins of tho great vesids from the leart, and of their primurg birnaches seo Tho Laucet, vol. i. 1812 .

+ For an analyais of the occasional peculinutics of these primary weins in the homan sulyject, bee an ablo and original monogrmph in the Philosoqdicat Transartions, Part 1., 1850, entilled "On the Derelopment of tho Great Anterior Vuips in Mau and Munmallis." By Joun Marshall, F.R.C.S., do
those distrihuted to the tharacic parietes. The coronary arteries are accompanied by veins which open by distinet orifices (foramina Thcbesii) into the right nuricle. Like the henrt itself, its main vessels do not depend for their support upon the hlood conveyed by them, but upon that cireulated by the small arteries (vasa rasorum) derived either from the vessel upon which they are distributed, or from some others in the neighhourhood. These little arteries are attended by veins of a corresponding size (venules) which enter the vene camites, thus carrying out the general order of vasenlar distribution to the minutest partienlar, Besides the larger nerves wbich accompay the main vessels, there are delieate filaments of the cerebro-spinal and sympathetic system distributed to their coats, for the purpose, as it is supposed, of governing their "eontractile movements." The vasa vasorum form an anastomosis as well upon the inner surface of the sheath as upon the artery eontained in this part; and hence in the operation for tying the vessel, the rule should be to disturb its conncxions as little as possible, otherwise its vitality, which depends upon these minute liranches, will, hy their rupture, be destroyed in the situation of the ligature, where it is most needed.
XI.-The branches of the systemic aorth form frequent anastomoses with each other in all parts of the hody. This anastomosis occurs chiefly amongst the branches of the main arteries proper to either side. Those hranches of the opposite vessels which join at the medion line are generally of very small size. Tbere are hut few instances in which a large hloodvessel erosses the contral tine from its own side to the other. Anastomosis at the median line hetween opposite vessels happens either by a fusion of their sides lyiug parallet, as, for example (and the only one), that of the twa vertebral arteries on the hasiler process of the occipital hone; or else hy a direct end-to-cnd union, of which the lateral pair of cerebral arteries, forming the circle of Witlis, and the two labial arteries forming the coronnry, are examples. The hranches of the main arteries of one side form numerous anastomoses in the muscles and in the eellular and adipose tissue generally. Other specinal hranches derived from the parent vessel nhove and helow the several joints ranify and anastomose so very freely over the surfaces of these parts, and seem to pass in referenee to tbem out of their direct course, that to effect this mode of distrihution appears to he no less immediate a design than to support the struetures of which the joints are composed.
XII.-The innominate artory. When this vessel is tied, the free direet circulation tbrough the principal arteries of the right arm, and the right side of the neck, bead, and lrain, hecomes arrested; and the degree of strength of the reenrrent circulation depends solely upon the amount of anastomosing points betwcell the following arteries of the opposite sides:- The small terminal hranches of the two occipital, the two auricular, the two superficial temporal, and the two frontal, inosculate with eacb other upon the sides, and over the vertex of the head,-the two vertehral, and the hranches of the internal carotid, inosculate at the hase and over the surface of the brain,- the two facial inosculate witb each other, and with the frontal above and tbe mental helow, at the median lize of the face,- -the two internal maxillary inoseulate hy their palatine, pbaryngeal, meniageal, and various other branches upon the surface of the parts to which they are distributed,-and lastly, the two superior thyroid arteries inosculate around the larynx and in the thyroid body. By these anastonoses it will he seen that the circulation is restored to the branches of the common enrotid almost solely. In regard to the suliclavian artery, the collateral circulatiou would be enrried on through the ayastomosing hranches of the two inferior thyroid in the thyroid hody,-through those of the two vertelral, in the cranium and upon the cervical vertebrax, -through those of the tro internal mam. mary, with each other behind the stermm, and with the thoracic branches of the axillary and the superior intercostal laterally,-lastly, through the anastomosing hranches of the ascending cervical and the descending oecipital, with eacb other, nad with the small lateral offsets of the vertehral.
XIII. - The common carotid arterics. Of these two vessels, the left one, arising, in gencral, from the arch of the aorta, is longer than the right one by the meusure of the innominate artery from which the rigbt arises. When either of the common carotids is tied, the circulation will be maintained through the nanstomosing hranches of the opposite vessels as ahove specified. When the vertehal or the inferior thyroid brancb arises from the middle of the conmon carotid, this vesscl will bave an additional source of supply if the ligature be applied to it helow the origin of such hranch. In the absence of the innominate artcry, the right as well as the left carotid will be found to spring directly from the aortic arch.
XIV.-The subclavian arteries. When a ligature is applied to the
inner third of this ressel within its primary liranehes, the collatural cireulation is earried on by the anastomoses of the arteries above mentioned; hut if the vertebral or the inferior thyroid arises cither from the aorta or the common earotid, the sonrees of arterial supply in respect to the arm will, of eaurse, be less numerous. When the outer portion of the suhelavian is tied between the scalenus and the claviele, while the branches arise from its inner part in their usual pasition and number, the collateral eirculation in reference to the arm is maintained by the following anastomosing branehes:-viz, those of the superfieialis eolli, and the supra and posterior seapular, with those of the acromial-thoraeic, the subseapular, and the anterior and posterior cirenmfles around the shorlder-joint and over the dorsal surface of the scapula; and those of the internal mammary and superior intercostal, with those of the thoracic arteries arising from the axillary Whatever be the variety as to their mode or phace of origin, the brauches emanating from the subclavian artery are eonstant as to tbeir destination. The length of the immer portion of the rigbt subelavian will vary aceording to the place at which it arises, wheller from the innominate artery, from the aseending, or from the deseending part of the nottie areh.
XY.-The axillary artery. As this vessel gives off throughout its whole length numerons branches which inoseulate principally' with the scapular; mammary, and superior intereostul lnauehes of the sutelavian, it will be evident that, in tying it above its own branches, the anasto. motic cireulation will, with much greater freedom, be maintained in respect to the arm, than if the begure be applied below those branches. Henee, therefore, when the axillary artery is afteeted with aneurism, thereby rendering it uusafe to apply a ligature to this vessel, it becoines not orly pathologically, but anatomically, the more prudent measure to tie the subclnvian immediately above the clavicle.
XVI. The brachial artery. When this artery is tied immediately below the axilla, the eollateral circulation will be werkly maintained, in eonsequeuce of the small number of anastomosing branches arisuig from it above and below the seat of the ligature. The two circunnfles humeri alone sead down branches to inoseuhte with the sinall muscular offsets from the middle of tbe brachinal artery. When tied in the middle of the arm, between the origins of the superior and inferior profuda arteries, the collateral circulation will depend chiefly upon the anastomosis of the former ressel with the recurrent branch of the radial, and of muscular branehes with each other. When the ligature is applied to the lower third of the vessel, the collatcmal cireulation will be comparatively frec through the annstomases of the two profundi branches with the radial, interosscous, and ulnar recurrent brauebes. If the artery happen to divide in the upper part of the arm into either of the branches of the forearm, or into all three, a ligature applied to any one of them will, of course, be insufficient to arrest the direct circulation through the forearm, if this be tbe ohject in view, as in a case of hamorthage. But iu the ense of aneurism, if the diseased abnormal branch be that to which the ligature is applied, not only will the dusired result in resplect to the aneurisin be attained, but the existence of the other branches will be an advantage, forasmuch as through them the forenrm and hand will still be supplied by the direct eirculation, aud not dependent solely mpon the searee eollateral currents, which they must be when the brachina artery is single, as in the usual form, and a ligature applied to it arrests entirely the direct current in respect to the lower segments of the member.
XYII.-The radial artery. If this vessel be tied in any part of its course, the collateral circulation will depend principally upon the fiee communication betweeu it and the ulnar, through the mediunt of the superficial aud deep pahoar arcbes and those of the branches derived from both vessels, and from the two interossei distributed to the fingers and back of the hand.
XV1II. - The whar artery. When this ressel is tied, the collateral circulation will depend upon the anastowosis of the palmar arches, as in the case last mentioned. While the radial, ulnar, and interosseous arteries spriug from the same nain vessel, and are continuous witb each other in the liand, they represent the condition of a circle of which, when either side is tied, the blood will pass in a current of almost equal strength towards the seat of the ligature fiom above and below-a circumstanee which renders it uccessary to tie both cuds of the ressel in cases of wounds.
XIX.-The common iliac aptery. When a ligature is applied to the middle of this artery, the direct circulation becones arrested in the lower limb and side of the pelvis corresponding to the ressel operated on. The collateral circulution will then be carried on hy the anastomosis of the following laranches:-riz., of those of che lumbar, the internal mammary, aud the epigastric arteries of that side wilt each
other, and with their fellows in the anterior abdominal parictes,-of those of the middle and lateral sacral, - of those of the superior with the midale and inferior hemorthoidal,-of those of the aortic and internal iliae uterine branches in the female, -and of the nortic and externak iliae spermatic branches in the male. The anastomoses of these arteries with their opposite fellows along the median line are much less frequent thinn those of the arteries of the neek and head.
XX. The axternal tiae artery. This vessel, when tied at its middle, will have its collateral circulation earried on hy the anastomoses of the internal mammary with the epigastrie,-by those of the ilio-lumbar with the eireumflex iline, -hy those of the internal cireumflex femoris and superior perforating arteries of the profunda fenornis, with tbe obturator, when this braneh arises from the internal iliae,-hy those of the gluteal with the external circunflex,-by those of the latter with the seiatic, and hy those of hotb obturators with each other, when orising, the one from the internal, the other from the external iliac. Not unfrequently cither the epigastric, obturator, ilio-Jumbar, or eircumflex iliae, arises from the middle of the external ihne, it which case the ligature should be placed ahove such branch, rather than elose below it, if the doctrine he time (which I myself believe it not to be), that the ligature in the Intter position suffers disturhance by the eirculatiou through the hraneh ere the process of closure in respect to the parent trunk is completed.

XXI-The common femoral artery. On considering the eireles of inosculation formed around the innoninate bone between the branelies derived from the iline arteries near the sacro-iliae junction, and those emanating from the common femoral, above and below Poupart's ligament, it will at once appear that, in respect to the lower limb, the
eollateral circulation will oceur more freely if the ligature be apphed to the main vessel (external iline) than if to the common femoral helow its bramehes.
XXII.-The superficiul fomoral artcry. When a ligature is applied to this vessel at the situation where it is overlupped hy the sartorius musele, the collateral eireulation will be maintained by the following arterics:-the long deseending hrauches of the external cireunflex heneath the rectus musele, inoseulating with the muscular branches of the nastomotica magna springing from tbe lower third of the main vesseh, -the three perforating branehes of the profunda, inosculating with the latter vessel, with the sciatic, and with the articular and museular branclies around the knee-joint.
XXIII.-The pepliteal artery. When any eircumstance renders it nceessary to tie this vessel in preference to the femoral, the ligature should be placed above its upper pair of articular hraueles; for hy so doing a freer collateral circulation will take place in referenee to the lcg . Tbe higature in this situation will lie hetween the anastomotic and articular arteries, which liecly communieate with each other.
XXIV.-The antcrior and posterior tibial and peronaal arteries. As these vessels correspond to tbe arteries of the forearm, the observations whieh apply to the one set apply also to the other.*

- For a complete history of the general vascular bystem, sce The dantony of tho Arteries of the Elumail Body, ly Rechard Quain, F.R.S.S., te., in which worls, besides the results of the suthor's own great exporiouce and orimionl observations, will bo found those of Huller's, scarpa's, Tiedemam's, dee, systematicaly nuranged with a view to onerativo surgery.

In instaneing the facts noticed in the text, as serving under comparison to explain how the hepatic vessels eonstitute noradical execption to the law of symmetry which presides over the development and distrihution of the vaseidnr system as a whole, I and led to inquire in what respect (if in any) the liver as an organ forms on exception to this general law either in shape, in function, or in relative position. While seeung that every central organ is single and symmetrical by the union of two ahsolutely similar sides, and that encls lateral pair of orgars is donble hy the disunion of sides so similur to each other in all respects that the deseription of either side serves for the other opposite, it has long since seemed to me a reasonable inferenee that, since tbe tiver on the right bas uo counterpart as a liver on the left, and that, since the spleen on the left has no counterpart as a spleen on the right, so these two organs (the liver and spleen) must themselves eorrespond to each otber, and as such, express thair respective significations. Under the belief that every exeeption (even though it be normal) to a general law or rule, is, like the buomaly itself, alone explieable aceording to such law, and expressing a fact not wore singular or isolated from other parallel facts than is one form from another, or from all others constituting the graduated seale of being, \mathbf{I} would, according to the lighlt of this evidence alone, have no hesitation in stating that the liver and spleen, as opposites, represent corresponding organs, even though they appeared at first view more dissimilar than they really are. In support of this analogy of both orrans, which is here, so fur as I an aware, origimally enunciated for nuatomical science, I record the following ohservations:-1st. Between the opposite parts of the same organic entity (between the opposite leaves of the same plant, for example), unture manifests no such ahsolute differenec in any case as exists between the leaf of a plant and of a book. 2ndly. When hetween two opposite parts of the same organic form there appears nny differential claracter, this is simply the result of a modification or metamorphosis of one of the two perfectly similar originals or archetypes, but never carried out to suel an extreme degree as to annihilate all trace of their analogy. 3rdly. The liver and the spleen are opposite parts; and as sueh, they are nssocinted by arteries which arise by a single trunk (celine axis) from the aorta, and hranch right and left, likr indices pointing to the rclationship between both these organs, in the same mannur as the two emulgent arteries point to the opposite renal organs. thly. The liver is divided into two lohes, right and left; the left is less than the rigbt; that quantity which is wanting to the
left lohe is equal to the quantity of a spleen; and if in idea we add the spleen to the left lohe of the liver, both lohes of tbis organ hecome quantitatively equal, and the whole liver symmetrical; hence, as the liver plus the spleen represents the whole struetural quantity, so the liver minus the spleen signifies that the two organs now dissevered still relate to each other as parts of the saine whole. 5thly. The liver, as being three-fourths of the whole, possesses the duct which emanates at the eentre of all glandular hodics. The spleen as heing one-fourth of the whole, is devoid of the duct. The liver having the duct, is functional as a gland, while the spleen having no duct, cannot serve any such funetion. If, in thus indicating the function which the spleen does not possess, tbere appcars no proof positive of the function which it does, perlaps the truth is, that as heing the duetless portion of the whole original hepatic quautity, it exists as a thing degenerate and funetionless, for it seems tbat the animal cconomy suffiers no loss of function when deprived of it. Githly. In early feetal life, the left lohe of the liver touches the spleen on the left side; hut in the process of ahdominal development, the two organs beeome scparated from each other right and left. Thly. In animals devoid of the spleen, the liver appears of a symmetrical shape, hoth its lohes heing equal; for that quantity which in other animals has hecome spleuic, is iu the lormer still hepatic. 8thly. In cases of transposition of hoth organs, it is the right lohe of the liver-that neurest the splecn, now on the right side-which is the smaller of the two lobes, proving that whichever lohe he in this condition, the spleen, as heing opposite to it, represcnts the minus hepatic quantity. From these, among other facts, I infer that the spleen is the representative of the liver on the left side, and that as such, its signification heing manifest, there exists no exeeption to the lav of animal symmetry. "Tam miran uniformitatem in planetarum systemate, necessario fatendum est intelligentia et concilio fuisse effectam. Idemque diei possit de uniformitate illa que est in corporibus animnlium. Hahent videliect animalia pleraque omnia, hinn latera, dextrum et sinistrum, forma consimili : et in lateribus illis, a posteriore quidem corporis sui parte, pedes biuos; ab auteriori autem parte, binos armos, vel pedes, vel alas, humeris affixos: interque humeros collum, in spinam excurrens, cui affixum est caput; in coque capite binas aures, hinos oculos, nasum, os et linguam; similiter posita omnia, in omnihus fere animalibus."-Newton, Optices, sive de reflex., fec. p. 411.

BINDING SECT. OCT 221968

[^0]: in number; in the cow they are phntia and single by the zaions of turo; in the bitch they rango in clendele roves, of six or eight ine cech, betrocen the breast and the pubbio symphisis. With these facts in view it will bo notieal how, while all other orguns of the avimal hoily, whatever bee thcir sizc uad the dogiee of their metamonthogis, still exbibit the uniformity of the luw of
 nature as to wer
 two Intter Partienturs solely by the mantume. The mationale of this will be seen in the
 potertian in mathre firr tham to be, by a simple increase, metamorphosed to taranmiforme organs, in any sitmation und of any mmmier; tall the animnl, like the Tollus of Poly theiem, speries to the As it is, we find the number and the plaee of the orgns in euch the opention of the law af ingucloryment and er of the offippriwg-the fituess alone limitiug the openation of the law afilevelopment and ehange.

[^1]: those of aration and Sensation, are as structurally idoatical, the one to the other, as the very arteries thenselves wish accompany them are to eaels other; and hence that it will ever he explauntory of their for serul finctions distinctness between tho merves, corresponding to and latiwent the hepatic, the remal, the fina, is it would be to look for a structural dintinction ing for tho gaverat secretions claperantic, anl other arteries, with the object of nocourtr Slarting finan this point, therefalorated from the hamogeneons bloal of those vessels
 Whagests itself is, up phay whagt ciral the nervous system in gencral, the first queation which enggests itself is, upon what, ciroumstance depomit the funotional differeuces of nerpes? in thic optival apparatus constan the erghn or purt in tohich they ramify. A nerve is visual dffactory in the nasal cavity; mator the ine; autitory in the car; gustatory in the tongue; surfice, according to the phe molor in the tuluseles, and sensory erorywhere throughont the surrice, seconding to the physsial properties of the part with which it is connected; but as

 may be land of examemation of the thection of any other: Aetual evidences of this, indeed, may be hind of examination of some of the lowest chass of vertelisate aatmals, it which that
 ernuin mad sirisal nerver whicl and the spinal vertebre indicates the sorjal homology of tho in aaturr thun that the which they transmit, nor dons this fiet appuar to mo less orident

[^2]: If thes vicws luppion to fill within the nutieg of nyy flysiologist, nud he, glancing

 firction I feel in secing truth dumonstunt wo to me hat na a buible complareed with the gatis-

[^3]: vil still maxifere the hife thint is in it throngle the folds of its Festmonts, however elosely ircuber it. When I assiga to thoracio anil to cardine action equal parte, in ofeecting the aircuntion of the blood, anid another, on opening a vein, says, $\mathrm{Lo}_{0} 1$ how untennble your lioctrine is; how can your thomaie indmetion be that forces which causes the blood to issue
 elpe will youn aceount for tho distal partt of this Yessel, and the weius in eapillhry continuth-
 tion with it brenwing hon with it, beenming enppry, when I have arrested, in respect to them, the heant's systolic netion 1 In the anme manner, nall with equml force, miny aill nygument in supprort of the one
 wiow bo opposeal by contrary I imusue, we cleave the tryuth in bent in mintuluning the other ; nad in the contention, we I mulugue, we cleave the truct in halves. At all eveuts, and wrging into nutice for tho
 present ouly tho function
 ginel of truth than what lowlelgod by the descriptive anntomist na a move nemrer to tho giesl of (ruth thas what ho wonill hnve us rest content with in the iden expressed by the etyisclogy (repl, anp) of thit nume, which, in reality, though it too Creck, irepplies no more heari in a wet mig mud walk tho liksectimg room Charon, to eupply its place, wriys the

[^4]:

[^5]:

[^6]: Fig. 1.-External ingainal hervin become direct- - A, Spinouns process of ilium.- B, Spine

 displacing eplighastric artery to the inner side of extarnal J, Fonomal artery.- K. Fcmoral
 vein-L. Saphonous opening.-M, Sophema rein.- N N, Sluath of fenomal vessols

[^7]: externul th the ring; when derivel further from the rout of that vesere, it Lis internal to if

[^8]: A, The abdominal norts at its bifurcation. B , Commeneenment of iuferior venu cava-
 A, Tho abdominal aorta at its bifurcation.-B, Conighe and left common iline seins$\mathrm{C} \mathrm{C}^{*}$, Right and left common ilino arterics. - D , Dight nud left exterual ilise veins.- G G,

